Page 158 - 2021_02-Haematologica-web
P. 158

A. Korporaal et al.
Disclosures
No conflicts of interests to disclose.
Contributions
Funding
Research in our laboratories was funded by the Landsteiner Foundation for Blood Transfusion Research (LSBR 1040 and 1627), the Netherlands Organization for Scientific Research
AK, NG, IC, SH and EvdA performed experiments. AK, (ZonMw TOP 40-00812-98-12128), the Netherlands TBvD, SH, SP, EvdA and MvL analyzed data. MvL and SP Genomics Initiative (NGI Zenith 93511036), and EU fp7 conceived the study. AK, MvL and SP made the figures and Specific Cooperation Research Project THALAMOSS (306201). wrote the paper. All authors reviewed the paper and agree with
its contents.
References
1.Perkins A, Xu X, Higgs DR, et al. Kruppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood. 2016;127(15):1856-1862.
2. Miller IJ, Bieker JJ. A novel, erythroid cell- specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol Cell Biol. 1993;13(5):2776-2786.
3. Suske G, Bruford E, Philipsen S. Mammalian SP/KLF transcription factors: bring in the family. Genomics. 2005;85(5):551-556.
4. Eaton SA, Funnell AP, Sue N, Nicholas H, Pearson RC, Crossley M. A network of Kruppel-like Factors (Klfs). Klf8 is repressed by Klf3 and activated by Klf1 in vivo. J Biol Chem. 2008;283(40):26937-26947.
5. Zhang P, Basu P, Redmond LC, et al. A func- tional screen for Kruppel-like factors that regulate the human gamma-globin gene through the CACCC promoter element. Blood Cells Mol Dis. 2005;35(2):227-235.
6. Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995;375(6529):316-318.
7. Perkins AC, Sharpe AH, Orkin SH. Lethal beta-thalassaemia in mice lacking the ery- throid CACCC-transcription factor EKLF. Nature. 1995;375(6529):318-322.
8. Perkins AC, Peterson KR, Stamatoyannopoulos G, Witkowska HE, Orkin SH. Fetal expression of a human Agamma globin transgene rescues globin chain imbalance but not hemolysis in EKLF null mouse embryos. Blood. 2000; 95(5):1827-1833.
9. Drissen R, von Lindern M, Kolbus A, et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol Cell Biol. 2005;25(12):5205-5214.
10. Hodge D, Coghill E, Keys J, et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood. 2006;107(8):3359- 3370.
11. Pilon AM, Arcasoy MO, Dressman HK, et al. Failure of terminal erythroid differentia- tion in EKLF-deficient mice is associated with cell cycle perturbation and reduced expression of E2F2. Mol Cell Biol. 2008; 28(24):7394-7401.
12. Tallack MR, Magor GW, Dartigues B, et al. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res. 2012;22(12):2385-2398.
13. Singleton BK, Burton NM, Green C, Brady RL, Anstee DJ. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood. 2008; 112(5):2081-2088.
14. Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid tran- scription factor KLF1 causes hereditary per- sistence of fetal hemoglobin. Nat Genet. 2010;42(9):801-805.
15. Liu D, Zhang X, Yu L, et al. KLF1 mutations are relatively more common in a tha- lassemia endemic region and ameliorate the severity of beta-thalassemia. Blood. 2014;124(5):803-811.
16. Huang J, Zhang X, Liu D, et al. Compound heterozygosity for KLF1 mutations is asso- ciated with microcytic hypochromic ane- mia and increased fetal hemoglobin. Eur J Hum Genet. 2015;23(10):1341-1348.
17. Satta S, Perseu L, Moi P, et al. Compound heterozygosity for KLF1 mutations associ- ated with remarkable increase of fetal hemoglobin and red cell protoporphyrin. Haematologica. 2011;96(5):767-770.
18. Viprakasit V, Ekwattanakit S, Riolueang S, et al. Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic glo- bin gene expression. Blood. 2014; 123(10):1586-1595.
19. Magor GW, Tallack MR, Gillinder KR, et al. KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood. 2015;125(15):2405-2417.
20. Arnaud L, Saison C, Helias V, et al. A dom- inant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet. 2010;87(5):721-727.
21. de la Iglesia-Inigo S, Moreno-Carralero MI, Lemes-Castellano A, Molero-Labarta T, Mendez M, Moran-Jimenez MJ. A case of congenital dyserythropoietic anemia type IV. Clin Case Rep. 2017;5(3):248-252.
22. Jaffray JA, Mitchell WB, Gnanapragasam MN, et al. Erythroid transcription factor EKLF/KLF1 mutation causing congenital dyserythropoietic anemia type IV in a patient of Taiwanese origin: review of all reported cases and development of a clini- cal diagnostic paradigm. Blood Cells Mol Dis. 2013;51(2):71-75.
23. Heruth DP, Hawkins T, Logsdon DP, et al. Mutation in erythroid specific transcription factor KLF1 causes hereditary spherocyto- sis in the nan hemolytic anemia mouse model. Genomics. 2010;96(5):303-307.
24. Siatecka M, Sahr KE, Andersen SG, Mezei M, Bieker JJ, Peters LL. Severe anemia in the Nan mutant mouse caused by sequence- selective disruption of erythroid Kruppel- like factor. Proc Natl Acad Sci U S A. 2010; 107(34):15151-15156.
25. Basu P, Lung TK, Lemsaddek W, et al. EKLF and KLF2 have compensatory roles in embryonic beta-globin gene expression and primitive erythropoiesis. Blood. 2007; 110(9):3417-3425.
26.Nebor D, Graber JH, Ciciotte SL, et al. Mutant KLF1 in adult anemic Nan mice leads to profound transcriptome changes
and disordered erythropoiesis. Sci Rep.
2018;8(1):12793.
27.Planutis A, Xue L, Trainor CD, et al.
Neomorphic effects of the neonatal anemia (Nan-Eklf) mutation contribute to deficits throughout development. Development. 2017;144(3):430-440.
28. Strouboulis J, Dillon N, Grosveld F. Developmental regulation of a complete 70- kb human beta-globin locus in transgenic mice. Genes Dev. 1992;6(10):1857-1864.
29. de Krom M, van de Corput M, von Lindern M, Grosveld F, Strouboulis J. Stochastic pat- terns in globin gene expression are estab- lished prior to transcriptional activation and are clonally inherited. Mol Cell. 2002;9(6):1319-1326.
30. Lyon MF, Glenister PH, Loutit JF, Peters J. Dominant haemolytic anemia. Mouse News Letters. 1983;68:68.
31. Dolznig H, Kolbus A, Leberbauer C, et al. Expansion and differentiation of immature mouse and human hematopoietic progeni- tors. Methods Mol Med. 2005;105:323-344.
32.Beug H, Leutz A, Kahn P, Graf T. Ts mutants of E26 leukemia virus allow trans- formed myeloblasts, but not erythroblasts or fibroblasts, to differentiate at the non- permissive temperature. Cell. 1984;39(3 Pt 2):579-588.
33. Palis J. Primitive and definitive erythro- poiesis in mammals. Front Physiol. 2014; 5:3.
34. Peterson KR. Hemoglobin switching: new insights. Curr Opin Hematol. 2003; 10(2):123-129.
35.Isern J, Fraser ST, He Z, Zhang H, Baron MH. Dose-dependent regulation of primi- tive erythroid maturation and identity by the transcription factor Eklf. Blood. 2010; 116(19):3972-3980.
36.Esteghamat F, Gillemans N, Bilic I, et al. Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood. 2013;121(13):2553-2562.
37. Gnanapragasam MN, McGrath KE, Catherman S, Xue L, Palis J, Bieker JJ. EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood. 2016;128(12):1631-1641.
38. Tallack MR, Keys JR, Humbert PO, Perkins AC. EKLF/KLF1 controls cell cycle entry via direct regulation of E2f2. J Biol Chem. 2009;284(31):20966-20974.
39. Tallack MR, Perkins AC. Megakaryocyte- erythroid lineage promiscuity in EKLF null mouse blood. Haematologica. 2010; 95(1):144-147.
40.Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet. 2010;42(9):742-744.
41.Norton LJ, Funnell APW, Burdach J, et al. KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells. Blood Adv. 2017;1(11):685- 692.
472
haematologica | 2021; 106(2)


































































































   156   157   158   159   160