Page 37 - 2020_09-Haematologica-web
P. 37
CLL pathogenesis and management
cells. Oncogene. 2020;39(6):1185-1197. 35.Arruga F, Bracciamà V, Vitale N, et al. Bidirectional linkage between the B-cell receptor and NOTCH1 in chronic lympho- cytic leukemia and in Richter’s syndrome: therapeutic implications. Leukemia.
2020;34(2):462-477.
36.Puente XS, Pinyol M, Quesada V, et al.
Whole-genome sequencing identifies recur- rent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101-105.
37.Hanna BS, Öztürk S, Seiffert M. Beyond bystanders: myeloid cells in chronic lym- phocytic leukemia. Mol Immunol. 2019;110 (1):77-87.
38. Riches JC, Davies JK, McClanahan F, et al. T cells from CLL patients exhibit features of T- cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9): 1612-1621.
39. Ramsay AG, Evans R, Kiaii S, Svensson L, Hogg N, Gribben JG. Chronic lymphocytic leukemia cells induce defective LFA-1-direct- ed T-cell motility by altering Rho GTPase signaling that is reversible with lenalido- mide. Blood. 2013;121(14):2704-2714.
40. Hanna BS, Roessner PM, Yazdanparast H, et al. Control of chronic lymphocytic leukemia development by clonally-expanded CD8+ T-cells that undergo functional exhaustion in secondary lymphoid tissues. Leukemia. 2019;33(3):625-637.
41. Llaó Cid L, Hanna BS, Iskar M, et al. CD8+ T-cells of CLL-bearing mice acquire a tran- scriptional program of T-cell activation and exhaustion. Leuk Lymphoma. 2020;61(2): 351-356.
42. Kipps TJ, Stevenson FK, Wu CJ, et al. Chronic lymphocytic leukaemia. Nat Rev Dis Prim. 2017;316096.
43. Wiestner A. The role of B-cell receptor inhibitors in the treatment of patients with chronic lymphocytic leukemia. Haematologica. 2015;100(12):1495-1507.
44. Mockridge CI, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK. Reversible anergy of sIgM-mediated signal- ing in the two subsets of CLL defined by VH-gene mutational status. Blood. 2007;109(10):4424-4431.
45. Moore VDG, Brown JR, Certo M, Love TM, Novina CD, Letai A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J Clin Invest. 2007;117(1):112-121.
46. Juliusson G, Oscier DG, Fitchett M, et al. Prognostic subgroups in B-cell chronic lym- phocytic leukemia defined by specific chro- mosomal abnormalities. N Engl J Med. 1990;323(11):720-724.
47. Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910-1916.
48. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic charac- terization of CLL: a study on 506 cases analysed with chromosome banding analy- sis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21 (12):2442-2451.
49.Baliakas P, Iskas M, Gardiner A, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249-255.
50. Huh YO, Abruzzo L V., Rassidakis GZ, et al. The t(14;19)(q32;q13)-positive small B-cell leukaemia: a clinicopathologic and cytoge- netic study of seven cases. Br J Haematol.
2007;136(2):220-228.
51. Nadeu F, Diaz-Navarro A, Delgado J, Puente
XS, Campo E. Genomic and epigenomic alterations in chronic lymphocytic leukemia. Annu Rev Pathol Mech Dis. 2020;15(1):149- 177.
52.Edelmann J, Holzmann K, Miller F, et al. High-resolution genomic profiling of chron- ic lymphocytic leukemia reveals new recur- rent genomic alterations. Blood. 2012;120 (24):4783-4794.
53.Delgado J, Salaverria I, Baumann T, et al. Genomic complexity and IGHV mutational status are key predictors of outcome of chronic lymphocytic leukemia patients with TP53 disruption. Haematologica. 2014;99 (11):e231-e234.
ed therapy. Nat Commun. 2017;8(1):2185. 66. Blombery P, Anderson MA, Gong JN, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer
Discov. 2019;9(3):342-353.
67.Lampson BL, Brown JR. Are BTK and
PLCG2 mutations necessary and sufficient for ibrutinib resistance in chronic lympho- cytic leukemia? Expert Rev Hematol. 2018;11(3):185-194.
68. Zhao X, Lwin T, Silva A, et al. Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma. Nat Commun. 2017;8(1):14920.
69.Agarwal R, Chan YC, Tam CS, et al. Dynamic molecular monitoring reveals that SWI–SNF mutations mediate resistance to ibrutinib plus venetoclax in mantle cell lym- phoma. Nat Med. 2019;25(1):119-129.
70. Pan R, Ruvolo V, Mu H, et al. Synthetic lethality of combined Bcl-2 inhibition and p53 activation in AML: mechanisms and superior antileukemic efficacy. Cancer Cell. 2017;32(6):748-760.e6.
71. Landau DA, Clement K, Ziller MJ, et al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell. 2014;26(6):813-825.
72.Ott CJ, Federation AJ, Schwartz LS, et al. Enhancer architecture and essential core reg- ulatory circuitry of chronic lymphocytic leukemia. Cancer Cell. 2018;34(6):982- 995.e7.
73. Mallm J, Iskar M, Ishaque N, et al. Linking aberrant chromatin features in chronic lym- phocytic leukemia to transcription factor networks. Mol Syst Biol. 2019;15(5):e8339.
74. Pastore A, Gaiti F, Lu SX, et al. Corrupted coordination of epigenetic modifications leads to diverging chromatin states and tran- scriptional heterogeneity in CLL. Nat Commun. 2019;10(1):1874.
75. Rodríguez D, Bretones G, Quesada V, et al. Mutations in CHD2 cause defective associa- tion with active chromatin in chronic lym- phocytic leukemia. Blood. 2015;126(2):195- 202.
76. Tsagiopoulou M, Chapaprieta V, Duran- Ferrer M, et al. Chronic lymphocytic leukemias with trisomy 12 show a distinct DNA methylation profile linked to altered chromatin activation. Haematologica. 2020 Feb 27. [Epub ahead of print].
77. Landgren O, Albitar M, Ma W, et al. B-cell clones as early markers for chronic lympho- cytic leukemia. N Engl J Med. 2009;360(7):659-667.
78. Criado I, Rodríguez-Caballero A, Gutiérrez ML, et al. Low-count monoclonal B-cell lymphocytosis persists after seven years of follow up and is associated with a poorer outcome. Haematologica. 2018;103(7):1198- 1208.
79. Rawstron AC, Bennett FL, O’Connor SJM, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575-583.
80. Rossi D, Spina V, Gaidano G. Biology and treatment of Richter syndrome. Blood. 2018;131(25):2761-2772.
81. Del Giudice I, Chiaretti S, Tavolaro S, et al. Spontaneous regression of chronic lympho- cytic leukemia: clinical and biologic features of 9 cases. Blood. 2009;114(3):638-646.
82.Barrio S, Shanafelt TD, Ojha J, et al. Genomic characterization of high-count MBL cases indicates that early detection of driver mutations and subclonal expansion are predictors of adverse clinical outcome.
54.
Thompson PA, Stingo F, Keating MJ, et al. Outcomes of patients with chronic lympho- cytic leukemia treated with first-line idelalis- ib plus rituximab after cessation of treat- ment for toxicity. Cancer. 2016;122(16): 2505-2511.
55.Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lympho- cytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11): 1205- 1216.
56. Baliakas P, Puiggros A, Xochelli A, et al. Additional trisomies amongst patients with chronic lymphocytic leukemia carrying tri- somy 12: the accompanying chromosome makes a difference. Haematologica. 2016;101(7):299-302.
57. Martínez-Trillos A, Pinyol M, Navarro A, et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lympho- cytic leukemia patients with favorable out- come. Blood. 2014;123(24):3790-3796.
58. Giménez N, Martínez-Trillos A, Montraveta A, et al. Mutations in the RAS-BRAF-MAPK- ERK pathway define a specific subgroup of patients with adverse clinical features and provide new therapeutic options in chronic lymphocytic leukemia. Haematologica. 2019;104(3):576-586.
59. Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247- 3254.
60. Malcikova J, Tausch E, Rossi D, et al. ERIC recommendations for TP53 mutation analy- sis in chronic lymphocytic leukemia - update on methodological approaches and results interpretation. Leukemia. 2018;32(5): 1070-1080.
61. Sutton L-A, Ljungström V, Enjuanes A, et al. Comparative analysis of targeted next-gen- eration sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study. Haematologica. 2020 Apr 9. [Epub ahead of print].
62.Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated sub- clones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139-2147.
63. Ojha J, Ayres J, Secreto C, et al. Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia. Blood. 2015;125(3):492-498.
64. Amin NA, Seymour E, Saiya-Cork K, Parkin B, Shedden K, Malek SN. A quantitative analysis of subclonal and clonal gene muta- tions before and after therapy in chronic lymphocytic leukemia. Clin Cancer Res. 2016;22(17):4525-4535.
65. Landau DA, Sun C, Rosebrock D, et al. The evolutionary landscape of chronic lympho- cytic leukemia treated with ibrutinib target-
haematologica | 2020; 105(9)
2215