Page 36 - 2020_09-Haematologica-web
P. 36
J. Delgado et al.
Acknowledgments
The authors would like to thank Silvia Beà, Jose Ignacio Martín-Subero, and Armando Lopez-Guillermo (Hospital Clinic of Barcelona and IDIBAPS) for their helpful comments on the manuscript, and Neus Giménez (IDIBAPS) for her assistance with the figure design. JD is supported by a grant from Generalitat de Catalunya (PERIS IPFE SLT006/17/301). FN is supported by a predoctoral fellowship from the Ministerio de Ciencia e Innovación (MCI) (BES- 2016-076372). DC is supported by MCI (RTI2018–094584- B-I00), Generalitat de Catalunya Suport Grups de Recerca (AGAUR, grant 2017-SGR-1009) and CIBERONC (CB16/12/00334). EC is supported by grants from “La
Caixa” Foundation (CLLEvolution-LCF/PR/HR17/ 52150017), the Instituto de Salud Carlos III and the European Regional Development Fund (FEDER – “Una Manera de Hacer Europa”) (PMP15/00007), MCI (grants RTI2018- 094274-B-I00 and SAF2016-81860-REDT), CIBERONC (CB16/12/00225) and AGAUR (2017-SGR-1142). EC is an Academia Researcher of the Institució Catalana de Recerca i Estudis Avançats (ICREA) of the Generalitat de Catalunya. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (BCLLatlas - 810287). We apologize to authors whose work was not included due to space limitations.
References
1. Campo E, Ghia P, Montserrat E, Müller- Hermelink HK, Stein H, Swerdlow SH. Chronic lymphocytic leukaemia/small lym- phocytic lymphoma. In: WHO Classification of Tumours of Haemato- poietic and Lymphoid Tissues. Rev 4th Ed. Lyon: WHO Press; 2017:216-221.
2. Howlader N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975-2016, National Cancer Institute. Bethesda, MD, USA. (Last accessed: January 15, 2020).
3. Puente XS, Beà S, Valdés-Mas R, et al. Non- coding recurrent mutations in chronic lym- phocytic leukaemia. Nature. 2015;526 (7574):519-524.
4. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolu- tion in progression and relapse. Nature. 2015;526(7574):525-530.
5.Kulis M, Heath S, Bibikova M, et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chron- ic lymphocytic leukemia. Nat Genet. 2012;44(11):1236-1242.
6. Beekman R, Chapaprieta V, Russiñol N, et al. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat Med. 2018;24(6):868-880.
7. Oakes CC, Claus R, Gu L, et al. Evolution of DNA methylation is linked to genetic aber- rations in chronic lymphocytic leukemia. Cancer Discov. 2014;4(3):348-361.
8. Berndt SI, Camp NJ, Skibola CF, et al. Meta- analysis of genome-wide association studies discovers multiple loci for chronic lympho- cytic leukemia. Nat Commun. 2016;7(1): 10933.
9. Speedy HE, Beekman R, Chapaprieta V, et al. Insight into genetic predisposition to chronic lymphocytic leukemia from integrative epigenomics. Nat Commun. 2019;10(1): 3615.
10. Kikushige Y, Ishikawa F, Miyamoto T, et al. Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell. 2011;20(2):246-259.
11. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152(4):714-726.
12. Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood.
2016;127(17):2122-2130.
13. Nadeu F, Clot G, Delgado J, et al. Clinical
impact of the subclonal architecture and mutational complexity in chronic lympho- cytic leukemia. Leukemia. 2018;32(3):645- 653.
14. Agathangelidis A, Ljungström V, Scarfò L, et al. Highly similar genomic landscapes in monoclonal b-cell lymphocytosis and ultra- stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica. 2018;103(5):865-873.
15. Brazdilova K, Plevova K, Skuhrova Francova H, et al. Multiple productive IGH rearrange- ments denote oligoclonality even in immunophenotypically monoclonal CLL. Leukemia. 2018;32(1):234-236.
16. Plevova K, Francova HS, Burckova K, et al. Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lym- phocytic leukemia are mostly derived from independent clones. Haematologica. 2014;99(2):329-338.
17.Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848-1854.
18. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lym- phocytic leukemia. Blood. 1999;94(6):1840- 1847.
19. Seifert M, Sellmann L, Bloehdorn J, et al. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J Exp Med. 2012;209(12):2183-2198.
20. Stamatopoulos K, Agathangelidis A, Rosenquist R, Ghia P. Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia. 2017;31(2):282-291.
21. Jaramillo S, Agathangelidis A, Schneider C, et al. Prognostic impact of prevalent chronic lymphocytic leukemia stereotyped subsets: analysis within prospective clinical trials of the German CLL Study Group (GCLLSG). Haematologica. 2019 Dec 26. [Epub ahead of print]
22. Dühren-von Minden M, Übelhart R, Schneider D, et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature. 2012;489(7415):309-312.
23.Minici C, Gounari M, Übelhart R, et al. Distinct homotypic B-cell receptor interac- tions shape the outcome of chronic lympho- cytic leukaemia. Nat Commun. 2017;8(1): 15746.
24. Maity PC, Bilal M, Koning MT, et al. IGLV3- 21∗01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signal- ing. Proc Natl Acad Sci U S A. 2020;117(8):4320-4327.
25. Stamatopoulos B, Smith T, Crompot E, et al. The light chain IgLV3-21 defines a new poor prognostic subgroup in chronic lymphocytic leukemia: results of a multicenter study. Clin Cancer Res. 2018;24(20):5048-5057.
26. Oakes CC, Seifert M, Assenov Y, et al. DNA methylation dynamics during B cell matura- tion underlie a continuum of disease pheno- types in chronic lymphocytic leukemia. Nat Genet. 2016;48(3):253-264.
27. Queirós AC, Villamor N, Clot G, et al. A B- cell epigenetic signature defines three bio- logic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia. 2015;29(3):598-605.
28. Wojdacz TK, Amarasinghe HE, Kadalayil L, et al. Clinical significance of DNA methyla- tion in chronic lymphocytic leukemia patients: results from 3 UK clinical trials. Blood Adv. 2019;3(16):2474-2481.
29.Herndon TM, Chen SS, Saba NS, et al. Direct in vivo evidence for increased prolif- eration of CLL cells in lymph nodes com- pared to bone marrow and peripheral blood. Leukemia. 2017;31(6):1340-1347.
30.
31.
32.
33.
34.
ten Hacken E, Burger JA. Microenvironment interactions and B-cell receptor signaling in chronic lymphocytic leukemia: Implications for disease pathogenesis and treatment. Biochim Biophys Acta. 2016;1863 (3):401- 413.
Herreros B, Rodríguez-Pinilla SM, Pajares R, et al. Proliferation centers in chronic lym- phocytic leukemia: the niche where NF-κB activation takes place. Leukemia. 2010;24(4): 872-876.
Herishanu Y, Pérez-Galán P, Liu D, et al. The lymph node microenvironment promotes B- cell receptor signaling, NF-kappaB activa- tion, and tumor proliferation in chronic lym- phocytic leukemia. Blood. 2011;117(2):563- 574.
López-Guerra M, Xargay-Torrent S, Rosich L, et al. The g-secretase inhibitor PF- 03084014 combined with fludarabine antag- onizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells. Leukemia. 2015;29(1):96-106.
López-Guerra M, Xargay-Torrent S, Fuentes P, et al. Specific NOTCH1 antibody targets DLL4-induced proliferation, migration, and angiogenesis in NOTCH1-mutated CLL
2214
haematologica | 2020; 105(9)