Page 89 - 2019_03-Haematologica-web
P. 89

NRF2 and Ara-C resistance in MDS
cells to Ara-C treatment while activation of NRF2 by agonist resulted in the reduced sensitivity to Ara-C. NRF2 mediates Ara-C resistance partly through its direct target gene DUSP1. Taken together, our findings suggest that silencing NRF2 re-sensitizes high-risk MDS cells to Ara-C treatment. Targeting NRF2 in combination with conventional chemotherapy could overcome drug resist- ance in high-risk MDS patients.
Funding
This work was supported by grants from the National Key Technology R&D Program (2014BAI09B13), National Natural Science Foundation of China Grants (81270582, 81470290, 81700121, 81800121), Major Program Fund of the Science Technology Department of Zhejiang Province (2013c03043-2), the Taub Foundation (to GH), and National Institutes of Health (NIH) (R01DK105014 to GH).
References
1. Cazzola M, Malcovati L. Myelodysplastic syndromes--coping with ineffective hematopoiesis. N Engl J Med. 2005; 352(6):536-538.
2. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079-2088.
3. Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465.
4. Killick SB, Carter C, Culligan D, et al. Guidelines for the diagnosis and manage- ment of adult myelodysplastic syndromes. Br J Haematol. 2014;164(4):503-525.
5. Burnett AK, Milligan D, Prentice AG, et al. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer. 2007;109(6):1114-1124.
6. Miller KB, Kim K, Morrison FS, et al. The evaluation of low-dose cytarabine in the treatment of myelodysplastic syndromes: a phase-III intergroup study. Ann Hematol. 1992;65(4):162-168.
7. Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabo- lism. Trends Biochem Sci. 2014;39(4):199- 218.
8. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401-426.
9. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179- 2191.
10. Rushworth SA, Zaitseva L, Murray MY, Shah NM, Bowles KM, MacEwan DJ. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance. Blood. 2012;120(26):5188-5198.
11. Zhang BP, Zhao J, Li SS, et al. Mangiferin activates Nrf2-antioxidant response ele- ment signaling without reducing the sensi- tivity to etoposide of human myeloid leukemia cells in vitro. Acta Pharmacol Sin. 2014;35(2):257-266.
12. Wu RP, Hayashi T, Cottam HB, et al. Nrf2 responses and the therapeutic selectivity of electrophilic compounds in chronic lym- phocytic leukemia. Proc Natl Acad Sci U S A. 2010;107(16):7479-7484.
13. NitureSK,KhatriR,JaiswalAK.Regulation of Nrf2-an update. Free Radic Biol Med. 2014;66:36-44.
14. Rushworth SA, Macewan DJ. The role of nrf2 and cytoprotection in regulating chemotherapy resistance of human
leukemia cells. Cancers (Basel). 2011;
3(2):1605-1621.
15. Rushworth SA, Bowles KM, MacEwan DJ.
High basal nuclear levels of Nrf2 in acute myeloid leukemia reduces sensitivity to proteasome inhibitors. Cancer Res. 2011; 71(5):1999-2009.
16. Cho JM, Manandhar S, Lee HR, Park HM, Kwak MK. Role of the Nrf2-antioxidant system in cytotoxicity mediated by anti- cancer cisplatin: implication to cancer cell resistance. Cancer Lett. 2008;260(1-2):96- 108.
17. Wunderlich M, Stockman C, Devarajan M, et al. A xenograft model of macrophage activation syndrome amenable to anti- CD33 and anti-IL-6R treatment. JCI Insight. 2016;1(15):e88181.
18. Pellagatti A, Cazzola M, Giagounidis A, et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoi- etic stem cells. Leukemia. 2010;24(4):756- 764.
19. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowl- edge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-15550.
Dusp6 that expands cardiac cell lineages.
Nat Chem Biol. 2009;5(9):680-687.
27. Kesarwani M, Kincaid Z, Gomaa A, et al. Targeting c-FOS and DUSP1 abrogates intrinsic resistance to tyrosine-kinase inhibitor therapy in BCR-ABL-induced
leukemia. Nat Med. 2017;23(4):472-482. 28. Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharmacol
Rev. 1995;47(2):331-385.
29. Zhao W, Sachsenmeier K, Zhang L, Sult E,
Hollingsworth RE, Yang H. A New Bliss Independence Model to Analyze Drug Combination Data. J Biomol Screen. 2014;19(5):817-821.
30. Garcia-Manero G, Tambaro FP, Bekele NB, et al. Phase II trial of vorinostat with idaru- bicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol. 2012;30(18):2204-2210.
31. Braun T, Carvalho G, Coquelle A, et al. NF- kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syn- drome. Blood. 2006;107(3):1156-1165.
32. Khacho M, Clark A, Svoboda DS, et al. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program. Cell Stem Cell. 2016;19(2):232-
20. Hayashi Y, Zhang Y, Yokota A, Yan XM,
Liu JQ, et al. Pathobiologic pseudohypoxia
as a putative mechanism underlying myelodysplastic syndromes. Cancer 247.
Discov. 2018 August 23. [Epub ahead of
print]
21. Tang X, Wang H, Fan L, et al. Luteolin
inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic Biol Med. 2011;50(11):1599-1609.
22. Chian S, Li YY, Wang XJ, Tang XW. Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemothera- peutic drugs via inhibition of the Nrf2 path- way. Asian Pac J Cancer Prev. 2014;15(6):2911-2916.
23. Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A. Pharmacological targeting of the transcrip- tion factor Nrf2 at the basal ganglia pro- vides disease modifying therapy for exper- imental parkinsonism. Antioxid Redox Signal. 2011;14(12):2347-2360.
24. Chorley BN, Campbell MR, Wang X, et al. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res. 2012;40(15):7416-7429.
25. Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflamma- tory response by blocking proinflammato- ry cytokine transcription. Nat Commun. 2016;7:11624.
26. Molina G, Vogt A, Bakan A, et al. Zebrafish chemical screening reveals an inhibitor of
33. Li L, Li M, Sun C, et al. Altered hematopoi- etic cell gene expression precedes develop- ment of therapy-related myelodysplasia/ acute myeloid leukemia and identifies patients at risk. Cancer Cell. 2011; 20(5):591-605.
34. Nakagawa T, Matozaki S, Murayama T, et al. Establishment of a leukaemic cell line from a patient with acquisition of chromo- somal abnormalities during disease pro- gression in myelodysplastic syndrome. Br J Haematol. 1993;85(3):469-476.
35. Liu Z, Chen J, Wang H, et al. Chidamide shows synergistic cytotoxicity with cytara- bine via inducing G0/G1 arrest and apopto- sis in myelodysplastic syndromes. Am J Transl Res. 2017;9(12):5631-5642.
36. Murase M, Iwamura H, Komatsu K, et al. Lack of cross-resistance to FF-10501, an inhibitor of inosine-5'-monophosphate dehydrogenase, in azacitidine-resistant cell lines selected from SKM-1 and MOLM-13 leukemia cell lines. Pharmacol Res Perspect. 2016;4(1):e00206.
37. Dicker F, Haferlach C, Sundermann J, et al. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia. 2010;24(8):1528-1532.
38. Karathedath S, Rajamani BM, Musheer Aalam SM, et al. Role of NF-E2 related fac- tor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the
haematologica | 2019; 104(3)
495


































































































   87   88   89   90   91