Page 80 - Haematologica-April 2018
P. 80
624
A. Thivakaran et al.
ation of the ROS pathway could be a targeted therapeutic approach to treat AML patients with low GFI1B expres- sion.
Acknowledgments
We thank the animal facility of University Hospital Essen.
Funding
This work was supported by the Deutsche Forschungsgemeinschaft and the IFORES program of University Hospital Essen.
References
1. Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009; 361(19):1872-1885.
2. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447.
3. Calero-Nieto FJ, Ng FS, Wilson NK, et al. Key regulators control distinct transcrip- tional programmes in blood progenitor and mast cells. EMBO J. 2014;33(11):1212- 1226.
4. Hones JM, Botezatu L, Helness A, et al. GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia. 2016; 30(6):1237-1245.
5. Gentner B, Pochert N, Rouhi A, et al. MicroRNA-223 dose levels fine tune prolif- eration and differentiation in human cord blood progenitors and acute myeloid leukemia. Exp Hematol. 2015;43(10):858- 868.
6. Khandanpour C, Sharif-Askari E, Vassen L, et al. Evidence that growth factor inde- pendence 1b regulates dormancy and peripheral blood mobilization of
14. Osawa M, Yamaguchi T, Nakamura Y, et al. Erythroid expansion mediated by the Gfi-1B zinc finger protein: role in normal hematopoiesis. Blood. 2002;100(8):2769- 2777.
15. Vassen L, Fiolka K, Moroy T. Gfi1b alters histone methylation at target gene promot- ers and sites of gamma-satellite containing heterochromatin. EMBO J. 2006; 25(11):2409-2419.
16. Saleque S, Kim J, Rooke HM, Orkin SH. Epigenetic regulation of hematopoietic dif- ferentiation by Gfi-1 and Gfi-1b is mediat- ed by the cofactors CoREST and LSD1. Mol Cell. 2007;27(4):562-572.
17. McGhee L, Bryan J, Elliott L, et al. Gfi-1 attaches to the nuclear matrix, associates with ETO (MTG8) and histone deacetylase proteins, and represses transcription using a TSA-sensitive mechanism. J Cell Biochem. 2003;89(5):1005-1018.
ing state in a Growth factor independence 1 dependent manner. Haematologica. 2016; 101(10):1216-1227.
27. Botezatu L, Michel LC, Helness A, et al. Epigenetic therapy as a novel approach for GFI136N-associated murine/human AML. Exp Hematol. 2016;44(8):713-726 e714.
28. Khandanpour C, Krongold J, Schuette J, et al. The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloprolifera- tive disorder in mice. Blood. 2012; 120(19):4006-4017.
29. Hu Y, Smyth GK. ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods. 2009; 347(1–2):70-78.
30. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737.
31. Goardon N, Marchi E, Atzberger A, et al. Coexistence of LMPP-like and GMP-like Leukemia Stem Cells in Acute Myeloid Leukemia. Cancer Cell. 2011;19(1):138-
hematopoietic stem
cells. Blood.
19. Wouters BJ, Lowenberg B, Erpelinck- Verschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a sub- group of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable out- come. Blood. 2009;113(13):3088-3091.
20. Rapin N, Bagger FO, Jendholm J, et al. Comparing cancer vs normal gene expres- sion profiles identifies new disease entities and common transcriptional programs in AML patients. Blood. 2014;123(6):894-904.
21. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression pro- files in acute myeloid leukemia. N Engl J Med. 2004;350(16):1617-1628.
22. Verhaak RG, Wouters BJ, Erpelinck CA, et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica. 2009;94(1):131-134.
23. Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syn- dromes. Blood. 2013;122(22):3616-3627.
24. Gerstung M, Pellagatti A, Malcovati L, et al. Combining gene mutation with gene expression data improves outcome predic- tion in myelodysplastic syndromes. Nat Commun. 2015;6:5901.
25. Bagger FO, Sasivarevic D, Sohi SH, et al. BloodSpot: a database of gene expression profiles and transcriptional programs for healthy and malignant haematopoiesis. Nucleic Acids Res. 2016;44(D1):D917-924.
26. Al-Matary YS, Botezatu L, Opalka B, et al. Acute myeloid leukemia cells polarize macrophages towards a leukemia support-
32. Anguita E, Gupta R, Olariu V, et al. A somatic mutation of GFI1B identified in leukemia alters cell fate via a SPI1 (PU.1) centered genetic regulatory network. Dev Biol. 2016;411(2):277-286.
33. Chowdhury AH, Ramroop JR, Upadhyay G, Sengupta A, Andrzejczyk A, Saleque S. Differential transcriptional regulation of meis1 by Gfi1b and its co-factors LSD1 and CoREST. PLoS One. 2013;8(1):e53666.
34. Lin YW, Slape C, Zhang Z, Aplan PD. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood. 2005;106(1):287-295.
35. Chan IT, Kutok JL, Williams IR, et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest. 2004;113(4):528-538.
36. Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progeni- tor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442(7104):818-822.
37. Meyer LH, Eckhoff SM, Queudeville M, et al. Early relapse in all is identified by time to leukemia in NOD/SCID mice and is characterized by a gene signature involving survival pathways. Cancer Cell. 2011; 19(2):206-217.
38. Hole PS, Darley RL, Tonks A. Do reactive oxygen species play a role in myeloid leukemias? Blood. 2011;117(22):5816-5826.
39. Jang YY, Sharkis SJ. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110(8):3056-3063.
40. Wang Y, Krivtsov AV, Sinha AU, et al. The
2010;116(24):5149-5161.
7. Laurent B, Randrianarison-Huetz V,
Marechal V, Mayeux P, Dusanter-Fourt I, Dumenil D. High-mobility group protein HMGB2 regulates human erythroid differ- entiation through trans-activation of GFI1B transcription. Blood. 2010;115(3):687-695.
8. Foudi A, Kramer DJ, Qin J, et al. Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation. J Exp Med. 2014;211(5):909-927.
9. SalequeS,CameronS,OrkinSH.Thezinc- finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev. 2002; 16(3):301-306.
10. Vassen L, Beauchemin H, Lemsaddek W, Krongold J, Trudel M, Moroy T. Growth factor independence 1b (gfi1b) is important for the maturation of erythroid cells and the regulation of embryonic globin expres- sion. PLoS One. 2014;9(5):e96636.
11. vanderMeerLT,JansenJH,vanderReijden BA. Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia. 2010; 24(11):1834-1843.
12. Schulz D, Vassen L, Chow KT, et al. Gfi1b negatively regulates Rag expression direct- ly and via the repression of FoxO1. J Exp Med. 2012;209(1):187-199.
13. Vassen L, Okayama T, Moroy T. Gfi1b:green fluorescent protein knock-in mice reveal a dynamic expression pattern of Gfi1b during hematopoiesis that is large- ly complementary to Gfi1. Blood. 2007;109(6):2356-2364.
18. Duan Z, Zarebski A, Montoya-Durango D,
Grimes HL, Horwitz M. Gfi1 coordinates
epigenetic repression of p21Cip/WAF1 by
recruitment of histone lysine methyltrans-
ferase G9a and histone deacetylase 1. Mol
Cell Biol. 2005;25(23):10338-10351. 152.
haematologica | 2018; 103(4)