Page 193 - Haematologica-April 2018
P. 193

SR-AI contributes to VWF clearance
References
1. Casonato A, Pontara E, Sartorello F, et al. Reduced von Willebrand factor survival in type Vicenza von Willebrand disease. Blood. 2002;99(1):180-184.
2. Haberichter SL, Castaman G, Budde U, et al. Identification of type 1 von Willebrand dis- ease patients with reduced von Willebrand factor survival by assay of the VWF propep- tide in the European study: molecular and clinical markers for the diagnosis and man- agement of type 1 VWD (MCMDM- 1VWD). Blood. 2008;111(10):4979-4985.
3. Lenting PJ, Westein E, Terraube V, et al. An experimental model to study the in vivo sur- vival of von Willebrand factor. Basic aspects and application to the R1205H mutation. J Biol Chem. 2004;279(13):12102-12109.
4. van Schooten CJ, Tjernberg P, Westein E, et al. Cysteine-mutations in von Willebrand factor associated with increased clearance. J Thromb Haemost. 2005;3(10):2228-2237.
5. Haberichter SL, Balistreri M, Christopherson P, et al. Assay of the von Willebrand factor (VWF) propeptide to identify patients with type 1 von Willebrand disease with decreased VWF survival. Blood. 2006;108(10):3344-3351.
6. Sztukowska M, Gallinaro L, Cattini MG, et al. Von Willebrand factor propeptide makes it easy to identify the shorter von Willebrand factor survival in patients with type 1 and type Vicenza von Willebrand disease. Br J Haematol. 2008;143(1):107- 114.
7. Eikenboom J, Federici AB, Dirven RJ, et al. VWF propeptide and ratios between VWF, VWF propeptide, and FVIII in the character- ization of type 1 von Willebrand disease. Blood. 2013;121(12):2336-2339.
8. Pruss CM, Golder M, Bryant A, et al. Pathologic mechanisms of type 1 VWD mutations R1205H and Y1584C through in vitro and in vivo mouse models. Blood. 2011;117(16):4358-4366.
9. Wohner N, Legendre P, Casari C, Christophe OD, Lenting PJ, Denis CV. Shear stress-inde- pendent binding of von Willebrand factor- type 2B mutants p.R1306Q & p.V1316M to LRP1 explains their increased clearance. J Thromb Haemost. 2015;13(5):815-820.
10. O'Sullivan JM, Aguila S, McRae E, et al. N- linked glycan truncation causes enhanced clearance of plasma-derived von Willebrand factor. J Thromb Haemost. 2016;14(12): 2446-2457.
11. Chion A, O'Sullivan JM, Drakeford C, et al. N-linked glycans within the A2 domain of von Willebrand factor modulate macrophage-mediated clearance. Blood. 2016;128(15):1959-1968.
12. Rastegarlari G, Pegon JN, Casari C, et al. Macrophage LRP1 contributes to the clear- ance of von Willebrand factor. Blood. 2012;119(9):2126-2134.
13. Grewal PK, Uchiyama S, Ditto D, et al. The Ashwell receptor mitigates the lethal coagu- lopathy of sepsis. Nat Med. 2008;14(6):648- 655.
14. Rydz N, Swystun LL, Notley C, et al. The C- type lectin receptor CLEC4M binds, inter- nalizes and clears von Willebrand factor and contributes to the variation in plasma von Willebrand factor levels. Blood. 2013;121(26):5228-5237.
15. Pegon JN, Kurdi M, Casari C, et al. Factor VIII and von Willebrand factor are ligands for the carbohydrate-receptor Siglec-5. Haematologica. 2012;97(12):1855-1863.
16. Casari C, Lenting PJ, Wohner N, Christophe OD, Denis CV. Clearance of von Willebrand factor. J Thromb Haemost. 2013;11 Suppl 1:202-211.
17. van Schooten CJ, Shahbazi S, Groot E, et al. Macrophages contribute to the cellular uptake of von Willebrand factor and factor VIII in vivo. Blood. 2008;112(5):1704-1712.
18. Muczynski V, Ayme G, Regnault V, et al. Complex formation with pentraxin-2 regu- lates factor X plasma levels and macrophage interactions. Blood. 2017;129(17):2443-2454.
19. Muczynski V, Bazaa A, Loubiere C, et al. Macrophage receptor SR-AI is crucial to maintain normal plasma levels of coagula- tion factor X. Blood. 2016;127(6):778-786.
20. Breslin WL, Strohacker K, Carpenter KC, Haviland DL, McFarlin BK. Mouse blood monocytes: standardizing their identifica- tion and analysis using CD115. J Immunol Methods. 2013;390(1-2):1-8.
21. Marx I, Christophe OD, Lenting PJ, et al. Altered thrombus formation in von Willebrand factor-deficient mice expressing von Willebrand factor variants with defec-
tive binding to collagen or GPIIbIIIa. Blood.
2008;112(3):603-609.
22. Marx I, Lenting PJ, Adler T, Pendu R,
Christophe OD, Denis CV. Correction of bleeding symptoms in von Willebrand fac- tor-deficient mice by liver-expressed von Willebrand factor mutants. Arterioscler Thromb Vasc Biol. 2008;28(3):419-424.
23. Rayes J, Hollestelle MJ, Legendre P, et al. Mutation and ADAMTS13-dependent mod- ulation of disease severity in a mouse model for von Willebrand disease type 2B. Blood. 2010;115(23):4870-4877.
24. Smith NL, Chen MH, Dehghan A, et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: the CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation. 2010;121(12):1382-1392.
25. Santiago-Garcia J, Kodama T, Pitas RE. The class A scavenger receptor binds to proteo- glycans and mediates adhesion of macrophages to the extracellular matrix. J Biol Chem. 2003;278(9):6942-6946.
26. Castro-Nunez L, Dienava-Verdoold I, Herczenik E, Mertens K, Meijer AB. Shear stress is required for the endocytic uptake of the factor VIII-von Willebrand factor com- plex by macrophages. J Thromb Haemost. 2012;10(9):1929-1937.
27. van der Flier A, Liu Z, Tan S, et al. FcRn res- cues recombinant factor VIII Fc fusion pro- tein from a VWF independent FVIII clear- ance pathway in mouse hepatocytes. PLoS One. 2015;10(4):e0124930.
28. Casari C, Du V, Wu YP, et al. Accelerated uptake of VWF/platelet complexes in macrophages contributes to VWD type 2B- associated thrombocytopenia. Blood. 2013;122(16):2893-2902.
29. Zani IA, Stephen SL, Mughal NA, et al. Scavenger receptor structure and function in health and disease. Cells. 2015;4(2):178-201.
30. Badirou I, Kurdi M, Legendre P, et al. In vivo analysis of the role of O-glycosylations of von Willebrand factor. PLoS One. 2012;7(5):e37508.
31. Lemmerhirt HL, Broman KW, Shavit JA, Ginsburg D. Genetic regulation of plasma von Willebrand factor levels: quantitative trait loci analysis in a mouse model. J Thromb Haemost. 2007;5(2):329-335.
haematologica | 2018; 103(4)
737


































































































   191   192   193   194   195