Page 172 - Haematologica-April 2018
P. 172

D. Belloni et al.
Acknowledgments
We would like to thank Dr. Andrea Motta and Dr. Tania Carenzo for technical assistance, Dr. Cristina Tresoldi, San Raffaele Scientific Institute, for providing MM samples, and Prof. V. Gattei, Aviano, Italy, for providing L-VCAM.
Funding
This work was supported by AIRC-Special Program Molecular Clinical Oncology AIRC 5x1000 project n. 9965 (to FCC) and from its extension (to PG).
References
1. Tlsty TD, Coussens LM. Tumor stroma and regulation of cancer development. Annu Rev Pathol. 2006;1:119-150.
2. Hu M, Polyak K. Microenvironmental reg- ulation of cancer development. Curr Opin Genet Dev. 2008;18(1):27-34.
3. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8(10):839-845.
4. Yamada M, Cukierman E. Modeling Tissue Morphogenesis and Cancer in 3D. Cell. 2007;130:601-610.
5. Hallek M, Bergsagel PL, Anderson KC. Multiple myeloma: increasing evidence for a multistep transformation process. Blood. 1998;91(1):3-21.
6. Hussein MA, Juturi JV, Lieberman I. Multiple myeloma: present and future.
Curr Opin Oncol. 2002;14(1):31-35.
7. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC. Understanding multiple myeloma patho- genesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer. 2007;7(8):585-598.
8. Burger JA, Ghia P, Rosenwald A, Caligaris- Cappio F. The microenvironment in mature B-cell malignancies: a target for new treat- ment strategies. Blood. 2009; 114(16):3367-3375.
9. Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and the identi- fication of new targets for myeloma thera- py. Leukemia. 2009;23(1):10-24
10. Kirshner J, Thulien KJ, Martin LD, et al. A unique three-dimensional model for evalu- ating the impact of therapy on Multiple Myeloma. Blood. 2008; 112(7):2935-2945.
11. Calimeri T, Battista E, Conforti F, et al. A unique three-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multi- ple myeloma cells. Leukemia.
2011;25(4):707-711.
12. Reagan MR, Mishima Y, Glavey SV, et al.
Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model. Blood. 2014;124(22):
3250-3259.
13. Jakubikova J, Cholujova D, Hideshima T, et
al. A novel 3D mesenchymal stem cell model of the multiple myeloma bone mar- row niche: biologic and clinical applica- tions. Oncotarget. 2016; 7(47):77326- 77341.
14. Mazzoleni G, Di Lorenzo D, Steimberg N. Modelling tissues in 3D: the next future of pharmaco-toxicology and food research? Genes Nutr. 2009;4(1):13-22.
15. Cosmi F, Steimberg N, Dreossi D, Mazzoleni G. Structural analysis of rat bone explants kept in vitro in simulated microgravity conditions. J Mech Behav Biomed Mater. 2009;2(2):164-172.
16. Ferrarini M, Steimberg N, Ponzoni M, et al. Ex-vivo dynamic 3-D culture of human tis- sues in the RCCSTM bioreactor allows the
study of Multiple Myeloma biology and response to therapy. PLoS One. 2013; 8(8):e71613.
17. Belloni D, Scabini S, Foglieni C, et al The vasostatin-I fragment of chromogranin A inhibits VEGF-induced endothelial cell pro- liferation and migration. FASEB J. 2007;21(12):3052-3062.
18. Castrén E, Sillat T, Oja S, et al. Osteogenic differentiation of mesenchymal stromal cells in two-dimensional and three-dimen- sional cultures without animal serum. Stem Cell Res Ther. 2015;6:167.
19. Yu Y, Schürpf T, Springer TA. How natal- izumab binds and antagonizes α4 inte- grins. J Biol Chem. 2013;288(45):2314- 32325.
20. Belloni D, Marcatti M, Ponzoni M, et al. Angiopoietin-2 in bone marrow milieu pro- motes multiple myeloma-associated angio- genesis. Exp Cell Res. 2015;330(1):1-12.
21. Dagna L, Corti A, Langheim S, et al. Tumor necrosis factor α as a master regulator of inflammation in Erdheim-Chester disease: rationale for the treatment of patients with infliximab. J Clin Oncol. 2012;30(28):286- 290.
22. Gole L, Lin A, Chua C, Chang WJ. Modified cIg-FISH protocol for multiple myeloma in routine cytogenetic laboratory practice. Cancer Genet. 2014;207(1-2):31- 34.
23. Noborio-Hatano K, Kikuchi J, Takatoku M, et al. Bortezomib overcomes cell-adhesion- mediated drug resistance through down- regulation of VLA-4 expression in multiple myeloma. Oncogene. 2009; 28(2):231-242.
24. Mondello P, Cuzzocrea S, Navarra M, Mian M. Bone marrow micro-environment is a crucial player for myelomagenesis and dis- ease progression. Oncotarget. 2017; 8(12):20394-20409.
25. Hsu J, Shi Y, Krajewski S, et al. The AKT kinase is activated in multiple myeloma tumor cells. Blood. 2001;98(9):2853-2855.
26. Younes H, Leleu X, Hatjiharissi E, et al. Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma. Clin Cancer Res. 2007;13(13):3771-3775.
27. Furukawa Y, Kikuchi J. Epigenetic mecha- nisms of cell adhesion-mediated drug resistance in multiple myeloma. Int J Hematol. 2016;104(3):281-292.
and -resistant MM cells. Exp Hematol.
2003;31(4):271-282.
31. Manier S, Sacco A, Leleu X, Ghobrial IM,
Roccaro AM. Bone marrow microenviron- ment in multiple myeloma progression. J Biomed Biotechnol. 2012;2012:157496.
32. Nerini-Molteni S, Ferrarini M, Cozza S, Caligaris-Cappio F, Sitia R. Redox home- ostasis modulates the sensitivity of myelo- ma cells to bortezomib. Br J Haematol. 2008;141(4):494-503.
33. Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical impli- cations. Nat Rev Clin Oncol. 2017; 14(2):100-113.
34. Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.
35. Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012; 120(5):1067-1076.
36. Ferrarini M, Mazzoleni G, Steimberg N, et al. Innovative Models to Assess Multiple Myeloma Biology and the Impact of Drugs. In: Multiple Myeloma - A Quick Reflection on the Fast Progress. R Hajek (Ed.), InTech, 2013. DOI: 10.5772/54312.
37. Zhang M, Boughton P, Rose B, Lee CS, Hong AM. The use of porous scaffold as a tumor model. Int J Biomater. 2013; 2013:396056.
38. De la Puente P, Azab AK. 3D tissue-engi- neered bone marrow: what does this mean for the treatment of multiple myeloma? Future Oncol. 2016;12(13):1545-1547.
39. Fischbach C, Chen R, Matsumoto T, et al Engineering tumors with 3D scaffolds. Nat Methods. 2007;4(10):855-860.
40. Schmeichel KL, Bissell MJ. Modeling tis- sue-specific signaling and organ function in three dimensions. J Cell Sci. 2003; 116(12):2377-88.
41. Reagan MR, Liaw L, Rosen CJ, Ghobrial IM. Dynamic interplay between bone and multiple myeloma: emerging roles of the osteoblast. Bone. 2015;75:161-169.
42. Zhu D, Wang Z, Zhao JJ, et al. The Cyclophilin A-CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nat Med. 2015;21(6):572-
28. Nefedova Y, Landowski TH, Dalton WS. 580.
Bone marrow stromal-derived soluble fac- tors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia. 2003; 17(6):1175-1182.
29. Podar K, Zimmerhackl A, Fulciniti M, et al. The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvi- ronment: therapeutic implications. Br J Haematol. 2011;155(4):438-448.
43. Mimura N, Hideshima T, Shimomura T, et al. Selective and potent Akt inhibition trig- gers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition. Cancer Res. 2014;74(16):4458-4469.
44. Tsubaki M, Takeda T, Ogawa N, et al. Overexpression of survivin via activation of ERK1/2, Akt, and NF-κB plays a central role in vincristine resistance in multiple myeloma cells. Leuk Res. 2015;39(4):445-
30. Greenstein S, Krett NL, Kurosawa Y, et al. 452.
Characterization of the MM.1 human mul- tiple myeloma (MM) cell lines: a model system to elucidate the characteristics, behavior, and signaling of steroid-sensitive
45. Belloni D, Veschini L, Foglieni C, et al. Bortezomib induces autophagic death in proliferating human endothelial cells. Exp Cell Res. 2010;316(6):1010-1018.
716
haematologica | 2018; 103(4)


































































































   170   171   172   173   174