Page 56 - Haematologica3
P. 56

X. Fang et al.
function in vitro and in vivo. Nat Genet.
2005;37(7):718-726.
32. Knight ZA, Schmidt SF, Birsoy K, Tan K,
Friedman JM. A critical role for mTORC1 in erythropoiesis and anemia. Elife. 2014; 3:e01913.
33. Jeon SM, Chandel NS, Hay N. AMPK regu- lates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 2012;485(7400):661-665.
34. Jones RG, Plas DR, Kubek S, et al. AMP- activated protein kinase induces a p53- dependent metabolic checkpoint. Mol Cell. 2005;18(3):283-293.
35. Okoshi R, Ozaki T, Yamamoto H, et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem. 2008;283(7):3979-3987.
36. Tzatsos A, Tsichlis PN. Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP- activated protein kinase-dependent phos- phorylation of IRS-1 at Ser-794. J Biol Chem. 2007;282(25):18069-18082.
37. Chakraborty A, Uechi T, Kenmochi N. Guarding the 'translation apparatus': defec- tive ribosome biogenesis and the p53 sig- naling pathway. Wiley Interdiscip Rev
RNA. 2011;2(4):507-522.
38. Mahfoudhi E, Lordier L, Marty C, et al. P53
activation inhibits all types of hematopoiet- ic progenitors and all stages of megakary- opoiesis. Oncotarget. 2016;7(22):31980- 31992.
39. Budanov AV, Karin M. p53 target genes ses- trin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell. 2008; 134(3):451-460.
40. Augustine JJ, Knauss TC, Schulak JA, Bodziak KA, Siegel C, Hricik DE. Comparative effects of sirolimus and mycophenolate mofetil on erythropoiesis in kidney transplant patients. Am J Transplant. 2004;4(12):2001-2006.
41. Ekberg H, Bernasconi C, Nöldeke J, et al. Cyclosporine, tacrolimus and sirolimus retain their distinct toxicity profiles despite low doses in the Symphony study. Nephrol Dial Transplant. 2010;25(6):2004-2010.
42. Shameem R, Hamid MS, Wu S. Risk of ane- mia attributable to everolimus in patients with cancer: a meta-analysis of randomized controlled trials. Anticancer Res. 2015; 35(4):2333-2340.
43. Diekmann F, Rovira J, Diaz-Ricart M, et al. mTOR inhibition and erythropoiesis: microcytosis or anaemia? Nephrol Dial
Transplant. 2012;27(2):537-541.
44. Socolovsky M. Molecular insights into stress erythropoiesis. Curr Opin Hematol.
2007;14(3):215-224.
45. Sankaran VG, Weiss MJ. Anemia: progress
in molecular mechanisms and therapies.
Nat Med. 2015;21(3):221-230.
46. Zhang X, Camprecios G, Rimmele P, et al.
FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. Am J Hematol. 2014; 89(10):954-963.
47. Green RJ, Herget M. Outcomes of sys- temic/strategic team consultation: I. Overview and one-month results. Fam Process. 1989;28(1):37-58.
48. Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA- modified oligonucleotide probes. Nat Methods. 2006;3(1):27-29.
49. Diez-Roux G, Banfi S, Sultan M, et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011;9(1):e1000582.
50. Kim M, Tan YS, Cheng WC, Kingsbury TJ, Heimfeld S, Civin CI. MIR144 and MIR451 regulate human erythropoiesis via RAB14. Br J Haematol. 2015;168(4):583-597.
416
haematologica | 2018; 103(3)


































































































   54   55   56   57   58