Page 33 - Haematologica3
P. 33

EVs in the hematopoietic microenvironment
sion. J Clin Invest. 2013;123(4):1542–1555. 22.Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel mark- ers to characterize heterogeneous popula- tions of extracellular vesicle subtypes. Proc
Natl Acad Sci USA. 2016;113(8):E968–977.
23. Gu H, Chen C, Hao X, et al. Sorting protein VPS33B regulates exosomal autocrine signal- ing to mediate hematopoiesis and leukemo- genesis. J Clin Invest. 2016;126(12):4537-
4553.
24. Ostrowski M, Carmo NB, Krumeich S, et al.
Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):19–30
25. Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6(1):22519.
26. Smith ZJ, Lee C, Rojalin T, et al. Single exo- some study reveals subpopulations distrib- uted among cell lines with variability related to membrane content. J Extracell Vesicles. 2015;4:28533.
lated by caveolin-1. J Biol Chem.
2013;288(24):17713–17724.
40.Barrès C, Blanc L, Bette-Bobillo P, et al.
Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesi- cle uptake by macrophages. Blood. 2010;115(3):696–705.
41. Zöller M. Tetraspanins: push and pull in sup- pressing and promoting metastasis. Nature. 2009;9(1):40–55.
42. Yáñez-Mó M, Barreiro O, Gordon-Alonso M, Sala-Valdés M, Sánchez-Madrid F. Tetraspanin-enriched microdomains: a func- tional unit in cell plasma membranes. Trends Cell Biol. 2009;19(9):434–446.
43. Hemler ME. Tetraspanin functions and asso- ciated microdomains. Nat Rev Mol Cell Biol. 2005;6(10):801–811.
44. Anzai N, Lee Y, Youn B-S, et al. C-kit associ- ated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progeni- tors. Blood. 2002;99(12):4413–4421.
45. Beckwith KA, Byrd JC, Muthusamy N. Tetraspanins as therapeutic targets in hema- tological malignancy: a concise review. Front Physiol. 2015;6:91.
46. Heusermann W, Hean J, Trojer D, et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endo- somes, and are targeted to the ER. J Cell Biol. 2016;213(2):173–184.
47. Kucharzewska P, Christianson HC, Welch JE, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-depen- dent activation of vascular cells during tumor development. Proc Natl Acad Sci USA. 2013;110(18):7312–7317.
48.Wen S, Dooner M, Cheng Y, et al. Mesenchymal stromal cell-derived extracel- lular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30(11):2221–2231.
49. Gutiérrez-Vázquez C, Villarroya-Beltri C, Mittelbrunn M, Sánchez-Madrid F. Transfer of extracellular vesicles during immune cell- cell interactions. Immunol Rev. 2013;251(1):125–142.
50. Tadokoro H, Umezu T, Ohyashiki K, Hirano T, Ohyashiki JH. Exosomes derived from hypoxic leukemia cells enhance tube forma- tion in endothelial cells. J Biol Chem. 2013;288(48):34343–34351.
51. Huan J, Hornick NI, Goloviznina NA, et al. Coordinate regulation of residual bone mar- row function by paracrine trafficking of AML exosomes. Leukemia. 2015;29(12): 2285–2295.
52.Salvucci O, Jiang K, Gasperini P, et al. MicroRNA126 contributes to granulocyte colony-stimulating factor-induced hemato- poietic progenitor cell mobilization by reducing the expression of vascular cell adhesion molecule 1. Haematologica. 2012;97(6):818–826.
53.Mathiyalagan P, Liang Y, Kim D, et al. Angiogenic mechanisms of human CD34(+) stem cell exosomes in the repair of ischemic hindlimb. Circ Res. 2017;120(9):1466–1476.
54.Lombardo G, Dentelli P, Togliatto G, et al. Activated Stat5 trafficking via endothelial cell-derived extracellular vesicles controls IL- 3 pro-angiogenic paracrine action. Sci Rep. 2016;6(1):25689.
55.Weilner S, Schraml E, Wieser M, et al. Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell. 2016;15(4):744–754.
56. Hromada C, Mühleder S, Grillari J, Redl H, Holnthoner W. Endothelial extracellular vesicles-promises and challenges. Front
Physiol. 2017;8:275.
57. Gong M, Yu B, Wang J, et al. Mesenchymal
stem cells release exosomes that transfer miRNAs to endothelial cells and promote angiogenesis. Oncotarget. 2017;8(28):45200- 45212.
58. Record M, Carayon K, Poirot M, Silvente- Poirot S. Exosomes as new vesicular lipid transporters involved in cell-cell communi- cation and various pathophysiologies. Biochim Biophys Acta. 2014;1841(1):108– 120.
59. Hoggatt J, Singh P, Sampath J, Pelus LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113(22):5444–5455.
60. Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods. J Transl Med. 2014;12(1):260.
27. Raposo G, Stoorvogel W. Extracellular vesi- cles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–383.
28. Timár CI, Lőrincz ÁM, Csépányi-Kömi R, et al. Antibacterial effect of microvesicles released from human neutrophilic granulo- cytes. Blood. 2013;121(3):510–518.
62. O'Connell RM, Chaudhuri AA, Rao DS, Gibson WSJ, Balazs AB, Baltimore D. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA. 2010;107(32):14235–14240.
63. Shi X-F, Wang H, Kong F-X, et al. Exosomal miR-486 regulates hypoxia-induced ery- throid differentiation of erythroleukemia cells through targeting Sirt1. Exp Cell Res. 2017;351(1):74–81.
64. Wang L-S, Li L, Li L, et al. MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood. 2015;125(8):1302–1313.
65.Davis C, Dukes A, Drewry M, et al. MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, sup- presses bone marrow stromal (stem) cell proliferation, and induces stem cell senes- cence. Tissue Eng Part A. 2016.23(21- 22);1231-1240.
29. Johnson SM, Dempsey C, Parker C, Mironov A, Bradley H, Saha V. Acute lym- phoblastic leukaemia cells produce large extracellular vesicles containing organelles and an active cytoskeleton. J Extracell Vesicles. 2017;6(1):e1294339.
30. Di Vizio D, Morello M, Dudley AC, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol. 2012;181(5):1573–1584.
31. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231–241.
32. Holmgren L, Szeles A, Rajnavölgyi E, et al. Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood. 1999;93(11):3956– 3963.
33. Hakulinen J, Sankkila L, Sugiyama N, Lehti K, Keski-Oja J. Secretion of active mem- brane type 1 matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes. J Cell Biochem. 2008;105(5):1211–1218.
34. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in ccncer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30(6):836–848.
35. Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol. 2013;165(2):77–84.
36.Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3(1):24641.
37. Christianson HC, Svensson KJ, van Kuppevelt TH, Li J-P, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internaliza- tion and functional activity. Proc Natl Acad Sci USA. 2013;110(43):17380–17385.
38. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovar- ian cancer cells. BMC Cancer. 2011;11 (1):108.
39. Svensson KJ, Christianson HC, Wittrup A, et al. Exosome uptake depends on ERK1/2- heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regu-
66.
67.
68.
Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evi- dence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006;20(5):847– 856.
Razmkhah F, Soleimani M, Mehrabani D, et al. Leukemia microvesicles affect healthy hematopoietic stem cells. Tumor Biol. 2017;39(2):101042831769223.
Viola S, Traer E, Huan J, et al. Alterations in acute myeloid leukaemia bone marrow stro- mal cell exosome content coincide with gains in tyrosine kinase inhibitor resistance. Br J Haematol. 2015;172(6):938-986
61.
Jiang J, Kao C-Y, Papoutsakis ET. How do megakaryocytic microparticles target and deliver cargo to alter the fate of hematopoi- etic stem cells? J Control Release. 2017;247:1–18.
69. Szczepanski MJ, Szajnik M, Welsh A, Whiteside TL, Boyiadzis M. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 2011;96(9):1302–1309.
70. Horiguchi H, Kobune M, Kikuchi S, et al. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms. Haematologica. 2016;101(4):437–447.
71. Muntión S, Ramos TL, Diez-Campelo M, et al. Microvesicles from mesenchymal stro- mal cells are involved in HPC-microenviron- ment crosstalk in myelodysplastic patients.
haematologica | 2018; 103(3)
393


































































































   31   32   33   34   35