Page 116 - Haematologica3
P. 116

X. Wang et al.
model of Duchenne muscular dystrophy by
aptamer-based serum proteomics. Sci Rep.
2015;5:17014.
30. Ersvaer E, Brenner AK, Vetas K, et al. Effects
of cytarabine on activation of human T cells - cytarabine has concentration-dependent effects that are modulated both by valproic acid and all-trans retinoic acid. BMC Pharmacol Toxicol. 2015;16:12.
31. Surget S, Khoury MP, Bourdon JC. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther. 2013;7:57-68.
32. Lane DP. Cancer. p53, guardian of the genome. Nature. 1992;358(6381):15-16.
33. Carr AM, Green MH, Lehmann AR.
Checkpoint policing by p53. Nature.
1992;359(6395):486-487.
34. Bieging KT, Mello SS, Attardi LD.
Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer. 2014;14(5):359-370.
35. Porter LA, Singh G, Lee JM. Abundance of cyclin B1 regulates gamma-radiation-induced apoptosis. Blood. 2000;95(8):2645-2650.
36. Hartlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity.
Immunity. 2015;42(2):332-343.
37. Lam AR, Le Bert N, Ho SS, et al. RAE1 lig-
ands for the NKG2D receptor are regulated by STING-dependent DNA sensor path- ways in lymphoma. Cancer Res. 2014;74(8):2193-2203.
38. Peschke K, Achleitner M, Frenzel K, et al. Loss of trex1 in dendritic cells is sufficient to trigger systemic autoimmunity. J Immunol. 2016;197(6):2157-2166.
39. Chen Z, Wang JH. Generation and repair of AID-initiated DNA lesions in B lympho- cytes. Front Med. 2014;8(2):201-216.
40. Yeap LS, Hwang JK, Du Z, et al. Sequence- intrinsic mechanisms that target AID muta- tional outcomes on antibody genes. Cell. 2015;163(5):1124-1137.
44. Mueller S, Haas-Kogan DA. WEE1 kinase as a target for cancer therapy. J Clin Oncol. 2015;33(30):3485-3487.
45. Pappano WN, Zhang Q, Tucker LA, et al. Genetic inhibition of the atypical kinase Wee1 selectively drives apoptosis of p53 inac- tive tumor cells. BMC Cancer. 2014;14:430.
46. Elledge SJ. Cell cycle checkpoints: prevent- ing an identity crisis. Science. 1996;274 (5293):1664-1672.
47. van Vugt MA, Medema RH. Getting in and out of mitosis with Polo-like kinase-1. Oncogene. 2005;24(17):2844-2859.
48. Aarts M, Sharpe R, Garcia-Murillas I, et al. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov. 2012;2(6):524-
41. Kuppers R. Mechanisms of B-cell lymphoma 539.
pathogenesis. Nat Rev Cancer. 2005;5(4):
251-262.
42. Harris PS, Venkataraman S, Alimova I, et al.
Integrated genomic analysis identifies the mitotic checkpoint kinase WEE1 as a novel therapeutic target in medulloblastoma. Mol Cancer. 2014;13:72.
43. Kogiso T, Nagahara H, Hashimoto E, et al. Efficient induction of apoptosis by Wee1 kinase inhibition in hepatocellular carcino- ma cells. Plos One. 2014;9(6): e100495.
49. Schenk EL, Koh BD, Flatten KS, et al. Effects of selective checkpoint kinase 1 inhibition on cytarabine cytotoxicity in acute myeloge- nous leukemia cells in vitro. Clin Cancer Res. 2012;18(19):5364-5373.
50. Karp JE, Thomas BM, Greer JM, et al. Phase I and pharmacologic trial of cytosine arabi- noside with the selective checkpoint 1 inhibitor Sch 900776 in refractory acute leukemias. Clin Cancer Res. 2012;18(24): 6723-6731.
476
haematologica | 2018; 103(3)


































































































   114   115   116   117   118