Page 42 - 2020_08-Haematologica-web
P. 42

A.T. Nurden and P. Nurden
84. Nurden P, Bordet JC, Pillois X, Nurden AT. An intracytoplasmic b3 Leu718 deletion in a patient with a novel platelet phenotype. Blood Adv. 2017;1(8):494-499.
85. Bury L, Falcinelli E, Chiasserini D, Springer TA, Italiano JE Jr, Gresele P. Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthe- nia. Haematologica. 2016;101(1):46-56.
86. Bury L, Zetterburg E, Leinoe EB, et al. A novel variant Glanzmann thrombasthenia due to co-inheritance of a loss and a gain- of-function mutation of ITGB3: evidence of a dominant effect of gain-of-function muta- tions. Haematologica. 2018;103(6):e259- e263.
87. Kahr WH, Pluthero FG, Elkadri A, et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun. 2017;8:14816.
88. Hamamy H, Makrythanasis P, Al-Allawi N, Muhsin AA, Antonarakis SE. Recessive thrombocytopenia likely due to a homozy- gous pathogenic variant in the FYB gene: case report. BMC Med Genet. 2014;15:135.
89. Spindler M, van Eeuwijk JMM, Schurr Y, et al. ADAP deficiency impairs megakary- ocyte polarization with ectopic proplatelet release and causes microthrombocytope- nia. Blood. 2018;132(6):635-646.
90. Marconi C, Di Buduo CA, LeVine K, et al. Loss-of-function mutations in PTPRJ cause a new form of inherited thrombocytope- nia. Blood. 2019;133(12):1346-1357.
91. Turro E, Greene D, Wijgaerts A, et al. A dominant gain-of-function in universal tyrosine kinase SRC causes thrombocy- topenia, myelofibrosis, bleeding and bone pathologies. Sci Transl Med. 2016;8 (328):328ra330.
92. Stormorken H, Holmsen H, Sund R, et al. Studies on the haemostatic defect in a com- plicated syndrome. An inverse Scott syn- drome platelet membrane abnormality. Thromb Haemost. 1995;74(5):1244-1251.
93. Nesin V, Wiley G, Kousi M, Ong EC, et al. Activating mutations in STIM1 and ORAI1 cause overlapping syndromes of tubular myopathy and congenital miosis. Proc Natl Acad Sci U S A. 2014;111(11):4197-4202.
94. Markello T, Chen D, Kwan JW et al. York platelet syndrome is a CRAC channelopa- thy due to gain-of-function mutations in STIM1. Mol Genet Metab. 2015;114(3): 474-482.
95. Stritt S, Nurden P, Favier R, et al. TRPM7 channel function deregulates throm- bopoiesis through altered cellular home- ostasis and cytoskeletal architecture. Nat Commun. 2016;7:11097.
96. Fletcher SJ, Johnson B, Lowe GC, et al. SLFN14 mutations underlie thrombocy- topenia with excessive bleeding and platelet secretion defects. J Clin Invest. 2015;125(9):3600-3605.
97. Fletcher SJ, Pisareva VP, Khan AQ, Tcherepanov A, Morgan NV, Pisarev AV. Role of the novel endoribonuclease SLN14 and its disease-causing mutations in riboso- mal degradation. RNA. 2018;24(7):939-949.
98. Manchev VT, Hilpert M, Berrou E, et al. A new form of macrothrombocytopenia induced by a germline mutation in the PRKACG gene. Blood. 2014;124(16):2554- 2563.
99. Hofmann I, Geer MJ, Vögtle T, et al. Congenital macrothrombocytopenia with focal myelofibrosis due to mutations in human G6b-B is rescued in humanized
mice. Blood. 2018;132(13):1399-1412. 100.Takeichi T, Torrelo A, Lee JYW et al. Biallelic mutations in KDSR disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia. J Invest Dermatol.
2017;137(11):2344-2353.
101.Heremans J, Garcia-Perez JE, Turro E, et al.
Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome. J Allergy Clin Immunol. 2018;142(2):630-646.
102. Lentaigne C, Greene D, Sivapalaratnam S, et al. Germline mutations in the transcrip- tion factor IKZF5 cause thrombocytopenia. Blood. 2019;134(23):2070-2081.
103. Morison IM, Cramer-Bordé EM, Cheesman EJ, et al. A mutation of human cytochrome C enhances the intrinsic apoptotic pathway but causes only thrombocytopenia. Nat Genet. 2008;40(4);387-389.
104. Ledgerwood EC, Dunstan-Harrison C, Ong L, Morison IM. CYCS gene variants associ- ated with thrombocytopenia. Platelets. 2019;30(5):672-674.
105. Gandhi MJ, Cummings CL, Drachman JG. FLJ14813 missense mutation: a candidate for autosomal dominant thrombocytopenia on chromosome 10. Hum Hered. 2003;55 (1):66-70.
106.Hurtado B, Trakala M, Ximenez-Embun P, et al. Thrombocytopenia-associated muta- tions in Ser/Thr kinase MASTL deregulate actin cytoskeletal dynamics in platelets. J Clin Invest. 2018;128(12):5351-5367.
107.Jones C, Denecke J, Strater R, et al. A novel type of macrothrombocytopenia associated with a defect in alpha2,3 sialylation. Am J Pathol. 2011;179(4):1969-1977.
108.Izumi R, Niihori T, Suzuki N, et al. GNE myopathy associated with congenital thrombocytopenia: a report of two sub- lings. Neuromuscul Disord. 2014;24(12): 1068-1072.
109.Revel-Vilk S, Shai E, Turro E, et al. GNE variants causing autosomal recessive macrothrombocytopenia without associat- ed muscle wasting. Blood. 2018;132(17): 1851-1854.
110.Futterer J, Dalby A, Lowe GC, et al. UK GAPP Study group. Mutation in GNE is associated with severe congenital thrombo- cytopenia. Blood. 2018;132(17):1855-1858.
111.Kauskot A, Pascreau T, Adam F, et al. A mutation in the gene coding for the sialic acid transporter SLC35A1 is required for platelet survival but not proplatelet forma- tion. Haematologica. 2018;103(12):e613- e617.
112.Seo A, Gulsuner S, Pierce S, et al. Inherited thrombocytopenia associated with muta- tion of UDP-galactose-4-epimerase (GALE). Hum Molec Genet. 2019;28(1):133-142.
113.Bastida JM, Benito R, Janusz K, et al Two novel variants of the ABCG5 gene cause xanthelasmas and macrothrombocytope- nia: a brief review of hematologic abnor- malities of sitosterolemia. J Thromb Haemost. 2017;15(9):1859-1866.
114.Kanaji T, Kanaji S, Montgomery RR, Patel SB, Newman PJ. Platelet hyperreactivity explains the bleeding abnormality and macrothrombocytopenia in a murine model of sitosterolemia. Blood. 2013;122 (15):2732-2742.
115.Balduini CL, Cattaneo M, Fabris F, et al. Inherited thrombocytopenias: a proposed diagnostic algorithm from the Italian Gruppo di Studio delle Plastrine. Haematologica. 2003;88(5):582-592.
116. Bolton-Maggs PHB, Chalmers EA, Collins
PW, et al. A review of inherited platelet dis- orders with guidelines for their manage- ment on behalf of the UKHCDO. Br J Haematol. 2006;135(5):603-633.
117.Noris P, Biino G, Pecci A, et al. Platelet diameters in inherited thrombocytopenias: analysis of 376 patients with all known dis- orders. Blood. 2014;124(6):e4-e10.
118. Gresele P. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost. 2015;13(2):314-322.
119.Westbury SK, Turro E, Greene D, et al. Human Phenotype Ontology annotation and cluster analysis to unravel genetic defects in 707 cases wth unexplained bleeding and platelet disorders. Genome Med. 2015;7(1):36.
120.Khan AO, Maclachlan A, Lowe JC, et al. High-throughput platelet spreading analy- sis: a tool for the diagnosis of platelet-based bleeding disorders. Haematologica. 2020; 105(3):e124-e128.
121.Van Geffen JP, Brouns SLN, Batista J, et al. High-throughput elucidation of thrombus formation reveals sources of platelet func- tion variability. Haematologica. 2019;104 (6):1256-1267.
122.Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH. On behalf of the BRIDGE- BPD Consortium and the ThromboGenomics Consortium. Inherited platelet disorders: towards DNA-based diagnosis. Blood. 2016;127(33):2814-2823.
123.Johnson B, Lowe GC, Futterer J, et al. Whole exome sequencing identifies genetic variants in inherited thrombocytopenia with secondary qualitative function defects. Haematologica. 2016;101(10): 1170-1179.
124.Simeoni I, Stephens JC, Hu F, et al. A high- throughput sequencing test for diagnosing inherited bleeding, thrombotic and platelet disorders. Blood. 2016;127(23):2791-2803.
125.Downes K, Megy K, Duarte D, et al. Diagnostic high-throughput sequencing of 2,396 patients with bleeding, thrombotic and platelet disorders. Blood. 2019;134(23): 2082-2091.
126.Megy K, Downes K, Simeoni I, et al. Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: commu- nication from the SSC of the ISTH. J Thromb Haemost. 2019;17(8):1253-1260.
127.Johnson B, Doak R, Allsup D, et al. A com- prehensive targeted next-generation sequencing panel for genetic diagnosis of patients with suspected inherited thrombo- cytopenia. Res Pract Thromb Haemost. 2018;2(4):640-652.
128.Bastida JM, Lozano ML, Benito R, et al. Introducing high-throughput sequencing into mainstream genetic diagnosis practice in inherited platelet disorders. Haematologica. 2018;103(1):148-162.
129.Leinoe E, Gabrielate M, Ostrup O, et al. Outcome of an enhanced diagnostic pipeline for patients suspected of inherited thrombocytopenia. Br J Haematol. 2019;186(2):373-376.
130. Nurden AT, Nurden P. High-throughput sequencing for rapid diagnosis of inherited platelet disorders: a case for a European consensus. Haematologica. 2018;103(1):6- 8.
131. Freson K, Turro E. High-throughput sequencing approaches for diagnosing hereditary bleeding and platelet disorders. J Thromb Haemost. 2017;15(7):1262-1272.
132.Rodeghiero F, Pabinger I, Ragni M, et al. Fundamentals for a systematic approach to
2018
haematologica | 2020; 105(8)


































































































   40   41   42   43   44