Page 41 - 2020_08-Haematologica-web
P. 41

Inherited thrombocytopenias
Hegglin anomaly and Fechtner, Sebastien, Epstein and Alport-like syndromes. Am J Hum Genet. 2001;69(5):1033-1045.
34. Saposnik B, Binard S, Fenneteau O, et al. French MYH9 network. Mutation spec- trum and genotype-phenotype correlations in a large French cohort of MYH9-related disorders. Mol Genet Genomic Med. 2014;2(4):297-312.
35. Aguilar A, Pertuy F, Eckly A, et al Importance of environmental stiffness for megakaryocyte differentiation and pro- platelet formation. Blood. 2016;128(16): 2022-2032.
36. Breton-Gorius J, Vainchenker W, Nurden A, Levy-Toledano S, Caen J. Defective alpha- granule production in megakaryocytes from gray platelet syndrome: ultrastructur- al studies of bone marrow cells and megakaryocytes growing in culture from blood cell precursors. Am J Pathol. 1981;102(1):10-19.
37. Gunay-Aygum M, Zivony-Elboum Y, Gumruk F, et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood. 2010;116(23):4990-5001.
38. Chen CH, Lo RW, Urban D, Pluthero FG, Kahr WH. a-granule biogenesis: from dis- ease to discovery. Platelets. 2017;28(2):147- 154.
39. Deppermann C, Cherpokova D, Nurden P, et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J Clin Invest. 2013;123(8):3331-3342.
40. Di Buduo CA, Alberelli AC, Glembotsky AC, et al. Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syn- drome patients. Sci Rep. 2016;6:23213.
41. Sowerby JM, Thomas DC, Clare S, et al. NBEAL2 is required for neutrophil and NK cell function and pathogen defense. J Clin Invest. 2017;127(9):3521-3526.
42. Wijgaerts A, Wittevrongel C, Thys C, et al. The transcription factor GATA1 regulates NBEAL2 expression through a long-dis- tance enhancer. Haematologica. 2017;102 (4):695-706.
43. Nichols KE, Crispino JD, Poncz M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet. 2000;24(3):266-270.
44. Stevenson WS, Morel-Kopp MC, Chen Q, et al. GFI1B mutation causes a bleeding dis- order with abnormal platelet function. J Thromb Haemost. 2013;11(11):2039-2047.
45. Monteferrario D, Bolar NA, Marneth AE, et al. A dominant negative GFI1B mutation in the gray platelet syndrome. New Engl J Med. 2014;370(3):245-253.
46. Van Oorschott R, Marneth AE, Bergevoet SM, et al. Inherited missense variants that affect GFI1B function do not necessarily cause. bleeding diatheses. Haematologica. 2019;104(6):e260-e264.
47. Ballmaier M, Germeshausen M, Schulze H, et al. c-Mpl mutations are the cause of con- genital amegakaryocytic thrombocyopenia. Blood. 2001;97(1):139-146.
48. Plo I, Bellané-Chantelot, Mosca M, Mazzi S, Marty C, Vainchenker W. Genetic alter- ations of the thrombopoietin/MPL/JAK2 axis impacting megakaryopoiesis. Front Endocrinol (Lausanne). 2017;8:234.
49. Imai K, Morio T, Zhu Y, et al. Clinical course of patients with WASP gene muta- tions. Blood. 2004;103(2):456-464.
50. Thrasher AJ, Burns SO. WASP: a key immunological multitasker. Nat Rev
Immunol. 2010;10(3):182-192.
51. Mahlaoui N, Pellier I, Mignot C, et al.
Straub G, Schulze H. Impact of genetic variants on haematopoiesis in patients with thrombocytopenia absent radii (TAR) syn- drome. Br J Haematol. 2017;179(4):606-
Characteristics and outcome of early-onset,
severe forms of Wiskott-Aldrich syndrome.
Blood. 2013;121(9):1510-1516. 617.
52. Sabri S, Foudi A, Boukour S, et al. Deficiency in the Wiskott-Aldrich protein induces premature proplatelet formation and platelet production in the bone mar- row compartment. Blood. 2006;108(1):134- 140.
68. Thompson AA, Nguyen LT. Amega- karyocytopenia and radio-ulnar synostosis are associated with HOXA11 mutation. Nat Genet. 2000;26(4):397-398.
69. Nijhori T, Ouchi-Uchiyama M, Sasahara Y, et al. Mutations in MECOM, encoding oncoprotein EVI1, cause radioulnar synos- tosis with amegakaryocytic thrombocy- topenia. Am J Hum Genet. 2015;97(6):848-
53. Aiuti A, Biasco L, Scarauzza S, et al.
Lentiviral hematopoietic stem cell gene
therapy in patients with Wiskott-Aldrich
syndrome. Science. 2013;341(6148): 854.
1233151.
54. Ferrua F, Cicalese MP, Galimberti S, et al.
Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott- Aldrich syndrome: interim results of a non- randomized, open-label, phase 1/2 clinical study. Lancet Haematol. 2019;6(5):e239- e253.
55. Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes famil- ial thrombocytopenia with propensity to develop acute myelogenous leukemia. Nat Genet. 1999;23(2):166-175.
56. Lordier L, Bluteau D, Jalil A, et al. RUNX1- induced silencing of non-muscle myosin heavy chain IIB contributes to megakary- ocyte polyploidization. Nat Commun. 2012;3:717.
57. Morgan NV, Daly M. Gene of the issue: RUNX1 mutations and inherited bleeding. Platelets. 2017;28(2):208-210.
58. Drachman JG, Jarvik GP, Mehaffey MG. Autosomal dominant thrombocytopenia: incomplete megakaryocyte differentiation and linkage to chromosome 10. Blood. 2000;96(1):118-125.
59. Noris P, Perrotta S, Seri M, et al. Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood. 2011;117(24):6673-6680.
60. Bluteau D, Balduini A, Balayn A, et al. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J Clin Invest. 2014;124(2):580-591.
61. Zaninetti C, Melazzini F, Croci GA, Boveri E, Balduini CL. Extramedullary hematopoiesis: a new feature of inherited thrombocytopenias. J Thromb Haemost. 2017;15(11):2226-2229.
62. Di Paola J, Porter CC. ETV6-related throm- bocytopenia and leukemia predisposition. Blood. 2019;134(8):663-667.
63. Noetzli L, Lo RW, Lee-Sherick AB, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocy- tosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015;47(5):535-538.
70. Nurden P, Debili N, Coupry I, et al. Thrombocytopenia resulting from muta- tions in filamin A can be expressed as an isolated syndrome. Blood. 2011;118(22): 5928-5937.
71. Begonja AJ, Hoffmeister KM, Hartwig JH, Falet H. FlnA-null megakaryocytes prema- turely release large and fragile platelets that circulate poorly. Blood. 2011;118(8):2285- 2295.
72. Donada A, Balayn N, Silwa D, et al. Disrupted filamin A/aIIbb3 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood. 2019;133 (16):1778-1788.
73. Stritt S, Nurden P, Turro E, et al. A gain-of- function variant in DIAPH1 causes domi- nant macrothrombocytopenia and hearing loss. Blood. 2016;127(23):2903-2914.
74. Martinelli S, Krumbach OHF, Pantaleoni F, et al. Functional dysregulation of CDC42 causes diverse developmental phenotypes. Am J Hum Genet. 2018;102(2):309-320.
75. Kunishima S, Kobayashi R, Itoh TJ, Hamaguchi M, Saito H. Mutation of the beta1-tubulin gene associated with congen- ital macrothrombocytopenia affecting microtubule assembly. Blood. 2009;113 (2):458-461.
76. Burley K, Westbury SK, Mumford AD. TUBB1 variants and human platelet traits. Platelets. 2018;29(2):209-211.
77. Latham SL, Ehmke M, Reinke PYA, et al. Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia. Nat Commun. 2018;9(1):4250.
78. Kunishima S, Okuno Y, Yoshida K, et al. ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet. 2013;92(3):431-438.
79. Guéguen P, Roualt K, Chen JM, et al. A mis- sense mutation in the alpha-actinin 1 gene (ACTN1) is the cause of autosomal domi- nant macrothrombocytopenia in a large French family. PloS One. 2013;8(9):e74728.
80. Bottega R, Marconi C, Faleschini M, et al. ACTN1-related thrombocytopenia: identi- fication of novel families for phenotypic characterization. Blood. 2015;125(5):869-
64. Melazzini F, Palombo F, Balduini A, et al. 872.
Clinical and pathogenic features of ETV6- related thrombocytopenia with predisposi- tion to acute lymphoblastic leukemia. Haematologica. 2016;101(11):1333-1342.
65. Raslova H, Komura E, Le Couedic JP, et al. Fli1 monoallelic expression combined with its hemizygous loss underlies Paris- Trousseau/Jacobsen thrombopenia. J Clin Invest. 2004;114(1):77-84.
66. Albers CA, Paul DS, Schulze H, et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet. 2012;44(4):435-439.
67. Manukjan G, Bösing H, Schmugge M,
81. Pleines I, Woods J, Chappaz S, et al. Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia. J Clin Invest. 2017;127(3):814-829.
82. Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood. 2011;118(23):5996- 6005.
83. Nurden AT, Pillois X, Fiore M, et al. Expanding the mutation spectrum of the aIIbb3 integrin in Glanzmann thrombas- thenia: screening of the ITGA2B and ITGB3 genes in a large international cohort. Hum Mutat. 2015;36(5):548-561.
haematologica | 2020; 105(8)
2017


































































































   39   40   41   42   43