Page 164 - 2020_08-Haematologica-web
P. 164

L.M. Jonart et al.
immunity. J Immunol. 2016;196(11):4793-
4804.
27. Montero J, Sarosiek KA, DeAngelo JD, et al.
Drug-induced death signaling strategy rapid- ly predicts cancer response to chemothera- py. Cell. 2015;160(5):977-989.
28. Bhola PD, Mar BG, Lindsley RC, et al. Functionally identifiable apoptosis-insensi- tive subpopulations determine chemoresis- tance in acute myeloid leukemia. J Clin Invest. 2016;126(10):3827-3836.
29. Kim KH, Sederstrom JM. Assaying cell cycle status using flow cytometry. Curr Protoc Mol Biol. 2015;111:28.6.1-11.
30. Tario JD, Muirhead KA, Pan D, Munson ME, Wallace PK. Tracking immune cell prolifera- tion and cytotoxic potential using flow cytometry. Methods Mol Biol. 2011;699: 119-164.
31. Ebinger S, Özdemir EZ, Ziegenhain C, et al. Characterization of rare, dormant, and ther- apy-resistant cells in ccute lymphoblastic leukemia. Cancer Cell. 2016;30(6):849-862.
32. Boyerinas B, Zafrir M, Yesilkanal AE, Price TT, Hyjek EM, Sipkins DA. Adhesion to osteopontin in the bone marrow niche regu- lates lymphoblastic leukemia cell dormancy. Blood. 2013;121(24):4821-4831.
33. Sipkins DA, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969- 973.
34. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progeni- tor cells. Science. 2008;322(5909):1861-1865.
35. Zuber J, Radtke I, Pardee TS, et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev. 2009;23(7):877-889.
36. Hiddemann W. Cytosine arabinoside in the treatment of acute myeloid leukemia: the role and place of high-dose regimens. Ann Hematol. 1991;62(4):119-128.
37. Chen H, Wang S, Zhang J, et al. A novel molecule Me6TREN promotes angiogenesis via enhancing endothelial progenitor cell mobilization and recruitment. Sci Rep. 2014;4:6222.
38. Zhang J, Ren X, Shi W, et al. Small molecule Me6TREN mobilizes hematopoietic stem/progenitor cells by activating MMP-9 expression and disrupting SDF-1/CXCR4
axis. Blood. 2014;123(3):428-441.
39. Buonamici S, Trimarchi T, Ruocco MG, et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature.
2009;459(7249):1000-1004.
40. Alsadeq A, Fedders H, Vokuhl C, et al. The
role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system. Haematologica. 2017;102(2):346- 355.
41. Münch V, Trentin L, Herzig J, et al. Central nervous system involvement in acute lym- phoblastic leukemia is mediated by vascular endothelial growth factor. Blood. 2017;130(5):643-654.
42. Cario G, Izraeli S, Teichert A, et al. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol. 2007;25(30):4813-4820.
50. Krause DS, Scadden DT. A hostel for the hostile: the bone marrow niche in hemato- logic neoplasms. Haematologica. 2015;100 (11):1376-1387.
51. Essers MAG, Trumpp A. Targeting leukemic stem cells by breaking their dormancy. Mol Oncol. 2010;4(5):443-450.
52. Norkin M, Uberti JP, Schiffer CA. Very late recurrences of leukemia: why does leukemia awake after many years of dormancy? Leuk Res. 2011;35(2):139-144.
53. Chiarini F, Lonetti A, Evangelisti C, et al. Advances in understanding the acute lym- phoblastic leukemia bone marrow microen- vironment: From biology to therapeutic tar- geting. Biochim Biophys Acta. 2016;1863(3): 449-463.
54. Moses BS, Slone WL, Thomas P, et al. Bone marrow microenvironment modulation of acute lymphoblastic leukemia phenotype. Exp Hematol. 2016;44(1):50-9.e1.
55. Pasello M, Manara MC, Scotlandi K. CD99 at the crossroads of physiology and pathol- ogy. J Cell Commun Signal. 2018;12(1):55-
43. Wigton EJ, Thompson SB, Long RA,
Jacobelli J. Myosin-IIA regulates leukemia engraftment and brain infiltration in a
mouse model of acute lymphoblastic
leukemia. J Leukoc Biol. 2016;100(1):143- 68.
153.
44. Holland M, Castro FV, Alexander S, et al.
RAC2, AEP, and ICAM1 expression are associated with CNS disease in a mouse model of pre-B childhood acute lym- phoblastic leukemia. Blood. 2011;118 (3):638-649.
45. Yao H, Price TT, Cantelli G, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560(7716):55-60.
46. Williams MTS, Yousafzai Y, Cox C, et al. Interleukin-15 enhances cellular prolifera- tion and upregulates CNS homing mole- cules in pre-B acute lymphoblastic leukemia. Blood. 2014;123(20):3116-3127.
47. Alsadeq A, Lenk L, Vadakumchery A, et al. IL7R is associated with CNS infiltration and relapse in pediatric B-cell precursor acute lymphoblastic leukemia. Blood. 2018;132 (15):1614-1617.
48. Naumann JA, Gordon PM. In vitro model of leukemia cell migration across the blood- cerebrospinal fluid barrier. Leuk Lymphoma. 2017;58(7):1747-1749.
49. Akers SM, O’Leary HA, Minnear FL, et al. VE-cadherin and PECAM-1 enhance ALL migration across brain microvascular endothelial cell monolayers. Exp Hematol. 2010;38(9):733-743.
56. Gaudichon J, Jakobczyk H, Debaize L, et al. Mechanisms of extramedullary relapse in acute lymphoblastic leukemia: reconciling biological concepts and clinical issues. Blood Rev. 2019;36:40-56.
57. Sison EAR, Magoon D, Li L, et al. Plerixafor as a chemosensitizing agent in pediatric acute lymphoblastic leukemia: efficacy and potential mechanisms of resistance to CXCR4 inhibition. Oncotarget. 2014;5(19): 8947-8958.
58. Uy GL, Rettig MP, Stone RM, et al. A phase 1/2 study of chemosensitization with plerix- afor plus G-CSF in relapsed or refractory acute myeloid leukemia. Blood Cancer J. 2017;7(3):e542-e542.
59. Cooper TM, Sison EAR, Baker SD, et al. A phase 1 study of the CXCR4 antagonist pler- ixafor in combination with high-dose cytarabine and etoposide in children with relapsed or refractory acute leukemias or myelodysplastic syndrome: a Pediatric Oncology Experimental Therapeutics Investigators’ Consortium study (POE 10- 03). Pediatr Blood Cancer. 2017;64(8).
60. Laurence ADJ. Location, movement and sur- vival: the role of chemokines in haematopoiesis and malignancy. Br J Haematol. 2006;132(3):255-267.
2140
haematologica | 2020; 105(8)


































































































   162   163   164   165   166