Page 106 - 2020_08-Haematologica-web
P. 106

S. Wang et al. 106(41):17413-17418.
22. Liu J, Zhang J, Ginzburg Y, et al. Quantitative analysis of murine terminal erythroid differentiation in vivo: novel method to study normal and disordered ery- thropoiesis. Blood. 2013;121(8):e43-e49.
23. Cumano A, Godin I. Ontogeny of the hematopoietic system. Annu Rev Immunol. 2007;25:745-785
24. Kakhlon O, Cabantchik ZI. The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med. 2002;33(8):1037-1046.
25. Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol. 2008;8(4):290-301.
26. Petrat F, Rauen U, de Groot H. Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluores- cence microscopy using the fluorescent probe, phen green SK. Hepatology. 1999; 29(4):1171-1179.
27. Jian J, Yang Q, Huang X. Src regulates Tyr (20) phosphorylation of transferrin receptor- 1 and potentiates breast cancer cell survival. J Biol Chem. 2011;286(41):35708-35715.
28. Senyilmaz D, Virtue S, Xu X, et al. Regulation of mitochondrial morphology and function by stearoylation of TFR1. Nature. 2015;525(7567):124-128.
29. Schmidt PJ, Toran PT, Giannetti AM, Bjorkman PJ, Andrews NC. The transferrin receptor modulates Hfe-dependent regula- tion of hepcidin expression. Cell Metab. 2008;7(3):205-214.
30. Wang Z, Yin W, Zhu L, et al. Iron drives T helper cell pathogenicity by promoting RNA-binding protein PCBP1-mediated proinflammatory cytokine production. Immunity. 2018;49(1):80-92.
31. Ludwiczek S, Aigner E, Theurl I, Weiss G. Cytokine-mediated regulation of iron trans- port in human monocytic cells. Blood. 2003; 101(10):4148-4154.
32. Kim S, Ponka P. Effects of interferon-gamma
and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide- induced degradation of iron regulatory pro- tein 2. J Biol Chem. 2000;275(9):6220-6226.
33. Testa U, Kühn L, Petrini M, Quaranta MT, Pelosi E, Peschle C. Differential regulation of iron regulatory element-binding protein(s) in cell extracts of activated lymphocytes versus monocytes-macrophages. J Biol Chem. 1991;266(21):13925-13930.
34. Voudoukis E, Karmiris K, Oustamanolakis P, et al. Association between thrombocytosis and iron deficiency anemia in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2013;25(10):1212-1216.
35. Choi SI, Simone JV, Jackson CW. Megakaryocytopoiesis in experimental iron deficiency anemia. Blood. 1974;43(1):111- 120.
36. Evstatiev R, Bukaty A, Jimenez K, et al. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of throm- bopoietin. Am J Hematol. 2014;89(5):524- 529.
37. Haas S, Hansson J, Klimmeck D, et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell. 2015; 17(4):422-434.
38. Canali S, Zumbrennen-Bullough KB, Core AB, et al. Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood. 2017; 129(4):405-414.
39. Koch P-S, Olsavszky V, Ulbrich F, et al. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. Blood. 2017;129(4):415-419.
40. Zhu BM, McLaughlin SK, Na R, et al. Hematopoietic-specific Stat5-null mice dis- play microcytic hypochromic anemia asso- ciated with reduced transferrin receptor gene expression. Blood. 2008;112 (5):2071- 2080.
41. Best CM, Pressman EK, Cao C, et al.
Maternal iron status during pregnancy com- pared with neonatal iron status better pre- dicts placental iron transporter expression in humans. FASEB J. 2016;30(10):3541-3550.
42. Young MF, Griffin I, Pressman E, et al. Maternal hepcidin is associated with placen- tal transfer of iron derived from dietary heme and nonheme sources. J Nutr. 2012; 142(1):33-39.
43. Goetz DH, Holmes MA, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacterio- static agent that interferes with siderophore- mediated iron acquisition. Mol Cell. 2002; 10(5):1033-1043.
44. Yang J, Goetz D, Li JY, et al. An iron delivery pathway mediated by a lipocalin. Mol Cell. 2002;10(5):1045-1056.
45. Kaplan J. Mechanisms of cellular iron acqui- sition: another iron in the fire. Cell. 2002;111(5):603-606.
46. Oudit GY, Sun H, Trivieri MG, et al. L-type Ca(2+) channels provide a major pathway for iron entry into cardiomyocytes in iron- overload cardiomyopathy. Nat Med. 2003; 9(9):1187-1194.
47. Byon JC, Chen J, Doty RT, Abkowitz JL. FLVCR is necessary for erythroid matura- tion, may contribute to platelet maturation, but is dispensable for normal hematopoietic stem cell function. Blood. 2013;122(16): 2903-2910.
48. Jenkitkasemwong S, Wang CY, Coffey R, et al. SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metabolism. 2015;22(1):138-150.
49. Gunshin H, Fujiwara Y, Custodio AO, et al. Slc11a2 is required for intestinal iron absorp- tion and erythropoiesis but dispensable in placenta and liver. J Clin Invest. 2005; 115(5):1258-1266.
50. Nai A, Lidonnici MR, Rausa M, et al. The second transferrin receptor regulates red blood cell production in mice. Blood. 2015; 125(7):1170-1179.
2082
haematologica | 2020; 105(8)


































































































   104   105   106   107   108