Page 244 - Haematologica May 2020
P. 244

P.J. Teoh et al.
K, et al. Analysis of signal transducer and
activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclu- sive events. Am J Pathol. 2003;162(5):1449- 1461.
15. An G, Acharya C, Deng S, et al. Cytogenetic and clinical marks for defining high-risk myeloma in the context of borte- zomib treatment. Exp Hematol. 2015;43(3):168-176.
16. An G, Xu Y, Shi L, et al. Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 2014;99(2):353-359.
17. Yu W, Guo R, Qu X, et al. The amplifica- tion of 1q21 is an adverse prognostic factor in patients with multiple myeloma in a Chinese population. Onco Targets Ther. 2016;9:295-302.
18. Fonseca R, Van Wier SA, Chng WJ, et al. Prognostic value of chromosome 1q21 gain by fluorescent in situ hybridization and increase CKS1B expression in myeloma. Leukemia. 2006;20(11):2034-2040.
19. Chang H, Qi X, Jiang A, Xu W, Young T, Reece D. 1p21 deletions are strongly asso- ciated with 1q21 gains and are an inde- pendent adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Bone Marrow Transplant. 2010;45(1):117-121.
20. Shaughnessy JD, Jr., Qu P, Usmani S, et al. Pharmacogenomics of bortezomib test- dosing identifies hyperexpression of pro- teasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with Total Therapy 3. Blood. 2011;118(13):3512- 3524.
21. Pulkki K, Pelliniemi TT, Rajamaki A, Tienhaara A, Laakso M, Lahtinen R. Soluble interleukin-6 receptor as a prognos- tic factor in multiple myeloma. Finnish Leukaemia Group. Br J Haematol. 1996;92(2):370-374.
22. Ohtani K, Ninomiya H, Hasegawa Y, et al. Clinical significance of elevated soluble interleukin-6 receptor levels in the sera of patients with plasma cell dyscrasias. Br J Haematol. 1995;91(1):116-120.
23. Lazzari E, Mondala PK, Santos ND, et al.
Alu-dependent RNA editing of GLI1 pro- motes malignant regeneration in multiple myeloma. Nat Commun. 2017;8(1):1922.
24. Teoh PJ, An O, Chung TH, et al. Aberrant hyperediting of myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood. 2018;132 (12):1304-1317.
25. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Ann Rev Biochem. 2010;79(1):321-349.
26. Song C, Sakurai M, Shiromoto Y, Nishikura K. Functions of the RNA editing enzyme ADAR1 and their relevance to human dis- eases. Genes (Basel). 2016;7(12).
27. Jiang Q, Crews LA, Barrett CL, et al. ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc Natl Acad Sci U S A. 2013;110(3):1041-1046.
28. Chen L, Li Y, Lin CH, et al. Recoding RNA editing of AZIN1 predisposes to hepatocel- lular carcinoma. Nat Med. 2013;19(2):209- 216.
29. Chan TH, Qamra A, Tan KT, et al. ADAR- Mediated RNA editing predicts progression and prognosis of gastric cancer. Gastroenterology. 2016;151(4):637-650.
30. Paz N, Levanon EY, Amariglio N, et al. Altered adenosine-to-inosine RNA editing in human cancer. Genome Res. 2007;17 (11):1586-1595.
survival. Leukemia. 2011;25(3):538-550.
36. Bataille R, Barlogie B, Lu ZY, et al. Biologic effects of anti-interleukin-6 murine mono- clonal antibody in advanced multiple
myeloma. Blood. 1995;86(2):685-691.
37. Voorhees PM, Manges RF, Sonneveld P, et al. A phase 2 multicentre study of siltux- imab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. Br J
Haematol. 2013;161(3):357-366.
38. San-Miguel J, Bladé J, Shpilberg O, et al. Phase 2 randomized study of bortezomib- melphalan-prednisone with or without sil- tuximab (anti–IL-6) in multiple myeloma.
Blood. 2014;123(26):4136.
39. Nemec P, Zemanova Z, Greslikova H, et al.
Gain of 1q21 is an unfavorable genetic prognostic factor for multiple myeloma patients treated with high-dose chemother- apy. Biology Blood Marrow Transplant. 2010;16(4):548-554.
40. Smetana J, Berankova K, Zaoralova R, et al. Gain(1)(q21) is an unfavorable genetic prognostic factor for patients with relapsed multiple myeloma treated with thalido- mide but not for those treated with borte- zomib. Clin Lymphoma Myeloma Leuk. 2013;13(2):123-130.
41. Kim SY, Min HJ, Park HK, et al. Increased copy number of the interleukin-6 receptor gene is associated with adverse survival in multiple myeloma patients treated with autologous stem cell transplantation. Biol Blood Marrow Transplant. 2011;17(6):810-
   31. Fumagalli D, Gacquer D, Rothé F, et al.
Principles governing A-to-I RNA editing in
the breast cancer transcriptome. Cell Rep. 2015;13(2):277-289. 820.
32. Teoh PJ, Chung TH, Sebastian S, et al. p53 haploinsufficiency and functional abnor- malities in multiple myeloma. Leukemia. 2014;14(10):102.
33. Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234-248.
34. Lin L, Benson DM, DeAngelis S, et al. A small molecule, LLL12 inhibits constitutive STAT3 and IL-6-induced STAT3 signaling and exhibits potent growth suppressive activity in human multiple myeloma cells. Int J Cancer. 2012;130(6):1459-1469.
35. Scuto A, Krejci P, Popplewell L, et al. The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppres- sion of human myeloma cell growth and
42. Nemlich Y, Baruch EN, Besser MJ, et al. ADAR1-mediated regulation of melanoma invasion. Nat Commun. 2018;9(1):2154.
43. QiL,SongY,ChanTimHonM,etal.An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer. Nucleic Acids Res. 2017;45(18):10436-10451.
44. Nie Y, Ding L, Kao PN, Braun R, Yang J-H. ADAR1 interacts with NF90 through dou- ble-stranded RNA and regulates NF90- mediated gene expression independently of RNA editing. Mol Cell Biol. 2005;25(16): 6956-6963.
45. Wang IX, So E, Devlin JL, Zhao Y, Wu M, Cheung VG. ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep. 2013;5(3):849-860.
 1404
  haematologica | 2020; 105(5)
   






















































   242   243   244   245   246