Page 155 - Haematologica May 2020
P. 155

TARP as target in acute myeloid leukemia
    TARP-directed CTL effectively kill TARP and HLA- A*0201 co-expressing cell lines and primary leukemic cells, and thus hold great promise for immunotherapeutic T-cell therapy.
Acknowledgments
Our gratitude goes to Dr. F. Plasschaert, the staff of the Department of adult Hematology and Pediatric Hematology and Oncology of the Ghent University Hospital (Ghent, Belgium), and C. Matthys of the Cord Blood Bank, for providing samples. The authors thank all patients and their parents for their partic- ipation in the study, as well as the data managers involved in the clinical trials. We are indebted to S. Vermaut for cell sorting and all technicians of the Childhood Cancer Foundation and
Laboratory of the Ghent University Hospital (Ghent, Belgium). We thank our collaborators from the LL Biology Working Group for their relevant contributions, in particular Prof. Dr. GJ Kaspers for taking interest in our research.
Funding
This research was supported by the Belgian Foundation against Cancer (grant 2014–265), FOD-KankerPlan (Actie29, grant to JL) and vzw Kinderkankerfonds (grant to TL). The Research Foundation - Flanders (Fonds voor Wetenschappelijk Onderzoek Vlaanderen, FWO) supported TK (grant 1831312N) and BD (grants 1113117 and V433317N). This work is submitted in partial fulfilment of the requirement for the PhD of candidate BD at Ghent University.
References
1. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommenda- tions from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453-474.
2. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-447.
3. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016; 6(7):e441.
4. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737.
5. Rasche M, Zimmermann M, Borschel L, et al. Successes and challenges in the treat- ment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018; 32(10):2167-2177.
6. Creutzig U, van den Heuvel-Eibrink MM, Gibson B, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187-3205.
7. von Neuhoff C, Reinhardt D, Sander A, et al. Prognostic impact of specific chromoso- mal aberrations in a large group of pediatric patients with acute myeloid leukemia treated uniformly according to trial AML- BFM 98. J Clin Oncol. 2010;28(16):2682- 2689.
8. De Moerloose B, Reedijk A, de Bock GH, et al. Response-guided chemotherapy for pediatric acute myeloid leukemia without hematopoietic stem cell transplantation in first complete remission: Results from pro- tocol DB AML-01. Pediatr Blood Cancer. 2019;66(5):e27605.
9. Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pedi- atric acute myeloid leukemia. Blood. 2001; 97(1):89-94.
10. Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self- renewal capacity. Nat Immunol. 2004; 5(7):738-743.
11. Shlush LI, Mitchell A, Heisler L, et al.
Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547(7661):104-108.
12. Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone- marrow endosteal region. Nat Biotechnol. 2007;25(11):1315-1321.
13. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017;129(12):1577-1585.
14. Griessinger E, Anjos-Afonso F, Pizzitola I, et al. A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. Stem Cells Transl Med. 2014;3(4):520-529.
15. Ng SW, Mitchell A, Kennedy JA, et al. A 17- gene stemness score for rapid determina- tion of risk in acute leukaemia. Nature. 2016;540(7633):433-437.
16. Terwijn M, Zeijlemaker W, Kelder A, et al. Leukemic Stem Cell Frequency: A Strong Biomarker for Clinical Outcome in Acute Myeloid Leukemia. PLoS One. 2014; 22:9(9):e10758.
17. van Rhenen A, Feller N, Kelder A, et al. High stem cell frequency in acute myeloid leukemia at diagnosis predicts high mini- mal residual disease and poor survival. Clin Cancer Res. 2005;11(18):6520-6527.
18. Hanekamp D, Denys B, Kaspers GJL, et al. Leukaemic stem cell load at diagnosis pre- dicts the development of relapse in young acute myeloid leukaemia patients. Br J Haematol. 2018;183(3):512-516.
19. Witte KE, Ahlers J, Schafer I, et al. High Proportion of Leukemic Stem Cells at Diagnosis Is Correlated with Unfavorable Prognosis in Childhood Acute Myeloid Leukemia. Pediatr Hemat Oncol. 2011;28(2):91-99.
20. Annesley CE, Brown P. The Biology and Targeting of FLT3 in Pediatric Leukemia. Front Oncol. 2014;4:263.
21. Hunger SP, Lu X, Devidas M, et al. Improved survival for children and adoles- cents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children's oncology group. J Clin Oncol. 2012;30(14):1663-1669.
22. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med. 2018;378(5):439- 448.
23. Hanekamp D, Cloos J, Schuurhuis GJ.
Leukemic stem cells: identification and clinical application. Int J Hematol. 2017;105(5):549-557.
24. Felipe Rico J, Hassane DC, Guzman ML. Acute myelogenous leukemia stem cells: from Bench to Bedside. Cancer Lett. 2013;338(1):4-9.
25. Perna F, Berman SH, Soni RK, et al. Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell. 2017;32(4):506-519.
26. Pollyea DA, Gutman JA, Gore L, et al. Targeting acute myeloid leukemia stem cells: a review and principles for the devel- opment of clinical trials. Haematologica. 2014;99(8):1277-1284.
27. Jen EY, Ko CW, Lee JE, et al. FDA Approval: Gemtuzumab Ozogamicin for the Treatment of Adults with Newly Diagnosed CD33-Positive Acute Myeloid Leukemia. Clin Cancer Res. 2018;24(14):3242-3246.
28. Parigger J, Zwaan CM, Reinhardt D, et al. Dose-related efficacy and toxicity of gem- tuzumab ozogamicin in pediatric acute myeloid leukemia. Expert Rev Anticancer Ther. 2016;16(2):137-146.
29. van Rhenen A, Moshaver B, Kelder A, et al. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distin- guish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia. 2007;21(8):1700- 1707.
30. Bonardi F, Fusetti F, Deelen P, et al. A pro- teomics and transcriptomics approach to identify leukemic stem cell (LSC) markers. Mol Cell Proteomics. 2013;12(3):626-637.
31. Majetl R, Becker MW, Tian Q, et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc Natl Acad Sci U S A. 2009;106(9):3396-3401.
32. Eppert K, Takenaka K, Lechman ER, et al. Stem cell gene expression programs influ- ence clinical outcome in human leukemia. Nat Med. 2011;17(9):1086-1093.
33. Forsberg EC, Passegue E, Prohaska SS, et al. Molecular signatures of quiescent, mobi- lized and leukemia-initiating hematopoiet- ic stem cells. PloS One. 2010;5(1):e8785.
34. Gal H, Amariglio N, Trakhtenbrot L, et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia. 2006;20(12):2147-2154.
 haematologica | 2020; 105(5)
1315
   




















































   153   154   155   156   157