Page 27 - Haematologica April 2020
P. 27

MDS PDX: from no options to many
mice. Blood. 2014;123(4):541-553.
10. Kim E, Ilagan JO, Liang Y, et al. SRSF2 muta- tions contribute to myelodysplasia by mutant-specific effects on exon recognition.
Cancer Cell. 2015;27(5):617-630.
11. Beachy SH, Aplan PD. Mouse models of
myelodysplastic syndromes. Hematol
Oncol Clin North Am. 2010;24(2):361-375.
12. Beurlet S, Chomienne C, Padua RA. Engineering mouse models with myelodys- plastic syndrome human candidate genes; how relevant are they? Haematologica.
2012;98(1):10-22.
13. Zhou T, Kinney MC, Scott LM, et al.
Revisiting the case for genetically engi- neered mouse models in human myelodys- plastic syndrome research. Blood. 2015;126(9):1057-1068.
14. Malcovati L, Papaemmanuil E, Bowen DT, et al. Clinical significance of SF3B1 muta- tions in myelodysplastic syndromes and myelodysplastic/myeloproliferative neo- plasms. Blood. 2011;118(24):6239-6246.
15. Franks CR, Bishop D, Balkwill FR, et al. Growth of acute myeloid leukaemia as dis- crete subcutaneous tumours in immune- deprived mice. Br J Cancer. 1977;35(5):697- 700.
16. Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645-648.
17. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-737.
18. Nilsson L, Åstrand-Grundström I, Anderson K, et al. Involvement and functional impair- ment of the CD34(+)CD38(-)Thy-1(+) hematopoietic stem cell pool in myelodys- plastic syndromes with trisomy 8. Blood. 2002;100(1):259-267.
19. Kerbauy DM, Lesnikov V, Torok-Storb B, et al. Engraftment of distinct clonal MDS- derived hematopoietic precursors in NOD/SCID-beta2-microglobulin-deficient mice after intramedullary transplantation of hematopoietic and stromal cells. Blood. 2004;104(7):2202-2203.
20. Thanopoulou E, Cashman J, Kakagianne T, et al. Engraftment of NOD/SCID- 2 microglobulin null mice with multilineage neoplastic cells from patients with myelodysplastic syndrome. Blood. 2004;103 (11):4285-4293.
21. Benito AI, Bryant E, Loken MR, et al. NOD/SCID mice transplanted with marrow from patients with myelodysplastic syn- drome (MDS) show long-term propagation of normal but not clonal human precursors. Leuk Res. 2003;27(5):425-436.
22. Muguruma Y, Matsushita H, Yahata T, et al. Establishment of a xenograft model of human myelodysplastic syndromes. Haematologica. 2011;96(4):543-551.
23. Pang WW, Pluvinage JV, Price EA, et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci U S A. 2013;110(8):3011- 3016.
24. Medyouf H, Mossner M, Jann J-C, et al. Myelodysplastic cells in patients reprogram
mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell. 2014;14(6):824-837.
25. Mian SA, Rouault-Pierre K, Smith AE, et al. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nature Commun. 2015;6: 10004.
26. Rouault-Pierre K, Mian SA, Goulard M, et al. Preclinical modeling of myelodysplastic syn- dromes. Leukemia. 2017;31(12):2702-2708.
27. Yoshimi A, Balasis ME, Vedder A, et al. Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood. 2017;130(4):397-407.
28. Zhang Y, He L, Selimoglu-Buet D, et al. Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Adv. 2017;1(14):972-979.
29. Krevvata M, Shan X, Zhou C, et al. Cytokines increase engraftment of human acute myeloid leukemia cells in immuno- compromised mice but not engraftment of human myelodysplastic syndrome cells. Haematologica. 2018;103(6):959-971.
30. Meunier M, Dussiau C, Mauz N, et al. Molecular dissection of engraftment in a xenograft model of myelodysplastic syn- dromes. Oncotarget. 2018;9(19):14993- 15000.
31. Shastri A, Choudhary G, Teixeira M, et al. Antisense STAT3 inhibitor decreases viabili- ty of myelodysplastic and leukemic stem cells. J Clin Invest. 2018;128(12):5479-5488.
32. Stevens BM, Khan N, D’Alessandro A, et al. Characterization and targeting of malignant stem cells in patients with advanced myelodysplastic syndromes. Nature Commun. 2018;9(1):3694.
33. Smith MA, Choudhary GS, Pellagatti A, et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 2019;21(5):640-650.
34. Song Y, Rongvaux A, Taylor A, et al. A high- ly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studies. Nature Commun. 2019;10(1):366.
35. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell develop- ment in NOD/LtSz-scid IL2R null mice engrafted with mobilized human hemopoi- etic stem cells. J Immunol. 2005;174(10): 6477-6489.
36. Wunderlich M, Chou F-S, Link KA, et al. AML xenograft efficiency is significantly improved in NOD|[sol]|SCID-IL2RG mice constitutively expressing human SCF, GM- CSF and IL-3. Leukemia. 2010;24(10):1785- 1788.
37. Martin MG, Welch JS, Uy GL, et al. Limited engraftment of low-risk myelodysplastic syndrome cells in NOD/SCID gamma-C chain knockout mice. Leukemia. 2010;24(9): 1662-1664.
38. Wunderlich M, Brooks RA, Panchal R, et al. OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tis- sues. Blood. 2014;123(24):e134-e144.
39. Reinisch A, Thomas D, Corces MR, et al. A humanized bone marrow ossicle xenotrans- plantation model enables improved engraft- ment of healthy and leukemic human hematopoietic cells. Nat Med. 2016;22(7): 812-821.
40. Antonelli A, Noort WA, Jaques J, et al. Establishing human leukemia xenograft mouse models by implanting human bone marrow–like scaffold-based niches. Blood. 2016;128(25):2949-2959.
41. Abarrategi A, Foster K, Hamilton A, et al. Versatile humanized niche model enables study of normal and malignant human hematopoiesis. J Clin Invest. 2017;127(2): 543-548.
42. Reinisch A, Hernandez DC, Schallmoser K, et al. Generation and use of a humanized bone-marrow-ossicle niche for hematopoi- etic xenotransplantation into mice. Nat Protoc. 2017;12(10):2169-2188.
43. Li AJ, Calvi LM. The microenvironment in myelodysplastic syndromes: niche-mediat- ed disease initiation and progression. Exp Hematol. 2017;55:3-18.
44. Pronk E, Raaijmakers MHGP. The mes- enchymal niche in MDS. Blood. 2019;133 (10):1031-1038.
45. Rongvaux A, Willinger T, Martinek J, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol. 2014;32(4):364-372.
46. Herndler-Brandstetter D, Shan L, Yao Y, et al. Humanized mouse model supports development, function, and tissue residency of human natural killer cells. Proc Natl Acad Sci U S A. 2017;114(45):E9626-E9634.
47. Geyh S, Oz S, Cadeddu RP, et al. Insufficient stromal support in MDS results from molec- ular and functional deficits of mesenchymal stromal cells. Leukemia. 2013;27(9):1841- 1851.
48. Schroeder T, Geyh S, Germing U, et al. Mesenchymal stromal cells in myeloid malig- nancies. Blood Res. 2016;51(4):225-232.
49. Poon Z, Dighe N, Venkatesan SS, et al. Bone marrow MSCs in MDS: contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia. 2019;33(6):1487-1500.
50. James S, Fox J, Afsari F, et al. Multiparameter Analysis of human bone marrow stromal cells identifies distinct immunomodulatory and differentiation-competent subtypes. Stem Cell Reports. 2015;4(6):1004-1015.
51. Chen Y, Jacamo R, Shi YX, et al. Human extramedullary bone marrow in mice: a novel in vivo model of genetically controlled hematopoietic microenvironment. Blood. 2012;119(21):4971-4980.
52. Passaro D, Abarrategi A, Foster K, et al. Bioengineering of humanized bone marrow microenvironments in mouse and their visu- alization by live imaging. J Vis Exp. 2017;(126). e55914.
53. Teofili L, Martini M, Nuzzolo ER, et al. Endothelial progenitor cell dysfunction in myelodysplastic syndromes: possible contri- bution of a defective vascular niche to myelodysplasia. Neoplasia. 2015;17(5):401- 409.
haematologica | 2020; 105(4)
869


































































































   25   26   27   28   29