Page 224 - Haematologica April 2020
P. 224

A. Mikulasova et al.
10. Nesbit CE, Tersak JM, Grove LE, Drzal A, Choi H, Prochownik EV. Genetic dissection of c-myc apoptotic pathways. Oncogene. 2000;19(28):3200-3212.
11. Baudino TA, McKay C, Pendeville-Samain H, et al. c-Myc is essential for vasculogene- sis and angiogenesis during development and tumor progression. Genes Dev. 2002;16(19):2530-2543.
12. Karlsson A, Deb-Basu D, Cherry A, Turner S, Ford J, Felsher DW. Defective double- strand DNA break repair and chromosomal translocations by MYC overexpression. Proc Natl Acad Sci U S A. 2003; 100(17):9974-9979.
13. Yin XY, Grove L, Datta NS, Long MW, Prochownik EV. C-myc overexpression and p53 loss cooperate to promote genomic instability. Oncogene. 1999;18(5):1177- 1184.
14. Walker BA, Wardell CP, Murison A, et al. APOBEC family mutational signatures are associated with poor prognosis transloca- tions in multiple myeloma. Nat Commun. 2015;6:6997.
15. Carrasco DR, Tonon G, Huang Y, et al. High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006;9(4):313-325.
16. Avet-Loiseau H, Li C, Magrangeas F, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27(27):4585-4590.
17. Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14 (19):2501-2514.
18. Shaffer AL, Emre NC, Lamy L, et al. IRF4 addiction in multiple myeloma. Nature. 2008;454(7201):226-231.
19. Manier S, Powers JT, Sacco A, et al. The LIN28B/let-7 axis is a novel therapeutic pathway in multiple myeloma. Leukemia. 2017;31(4):853-860.
20. Segalla S, Pivetti S, Todoerti K, et al. The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Res. 2015;43(10):5182-5193.
21. Avet-Loiseau H, Gerson F, Magrangeas F, et al. Rearrangements of the c-myc oncogene are present in 15% of primary human mul- tiple myeloma tumors. Blood. 2001; 98(10):3082-3086.
22. Gabrea A, Martelli ML, Qi Y, et al. Secondary genomic rearrangements involv- ing immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors. Genes Chromosomes Cancer. 2008;47(7):573-590.
23. Shou Y, Martelli ML, Gabrea A, et al. Diverse karyotypic abnormalities of the c- myc locus associated with c-myc dysregu- lation and tumor progression in multiple myeloma. Proc Natl Acad Sci U S A. 2000; 97(1):228-233.
24. Dib A, Gabrea A, Glebov OK, Bergsagel PL,
Kuehl WM. Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst Monogr. 2008; (39):25-31.
25. Bertrand P, Bastard C, Maingonnat C, et al. Mapping of MYC breakpoints in 8q24 rearrangements involving non- immunoglobulin partners in B-cell lym- phomas. Leukemia. 2007;21(3):515-523.
26. Busch K, Keller T, Fuchs U, et al. Identification of two distinct MYC break- point clusters and their association with various IGH breakpoint regions in the t(8;14) translocations in sporadic Burkitt- lymphoma. Leukemia. 2007;21(8):1739- 1751.
27. Kuppers R, Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lym- phomas. Oncogene. 2001;20(40):5580- 5594.
28. Robbiani DF, Nussenzweig MC. Chromosome translocation, B cell lym- phoma, and activation-induced cytidine deaminase. Annu Rev Pathol. 2013;8:79- 103.
29. Gabrea A, Leif Bergsagel P, Michael Kuehl W. Distinguishing primary and secondary translocations in multiple myeloma. DNA Repair (Amst). 2006;5(9-10):1225-1233.
30. Loven J, Hoke HA, Lin CY, et al. Selective inhibition of tumor oncogenes by disrup- tion of super-enhancers. Cell. 2013; 153(2):320-334.
31. Yata K, Yaccoby S. The SCID-rab model: a novel in vivo system for primary human myeloma demonstrating growth of CD138-expressing malignant cells. Leukemia. 2004;18(11):1891-1897.
32. Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational driv- ers reveals oncogene dependencies in mul- tiple myeloma. Blood. 2018;132(13):1461.
33. Yan CT, Boboila C, Souza EK, et al. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature. 2007;449(7161):478-482.
34. Demchenko Y, Roschke A, Chen WD, Asmann Y, Bergsagel PL, Kuehl WM. Frequent occurrence of large duplications at reciprocal genomic rearrangement break- points in multiple myeloma and other tumors. Nucleic Acids Res. 2016; 44(17):8189-8198.
35. Gene Ontology C. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(Database issue):D1049-1056.
36. Mi H, Huang X, Muruganujan A, et al. PANTHER version 11: expanded annota- tion data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017; 45(D1):D183-D189.
37. Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol. 2009;563:123-140.
38. Fabregat A, Sidiropoulos K, Garapati P, et al. The Reactome pathway Knowledgebase. Nucleic Acids Res. 2016;
44(D1):D481-487.
39. Carramusa L, Contino F, Ferro A, et al. The
PVT-1 oncogene is a Myc protein target that is overexpressed in transformed cells. J Cell Physiol. 2007;213(2):511-518.
40. Molyneux EM, Rochford R, Griffin B, et al. Burkitt's lymphoma. Lancet. 2012; 379(9822):1234-1244.
41. Kuehl WM, Bergsagel PL. Multiple myelo- ma: evolving genetic events and host inter- actions. NatRevCancer. 2002;2(3):175-187.
42. Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation. Trends Genet. 2014;30(3):85-94.
43. Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating non- recurrent rearrangements associated with genomic disorders. Cell. 2007;131(7):1235- 1247.
44. Hastings PJ, Ira G, Lupski JR. A microho- mology-mediated break-induced replica- tion model for the origin of human copy number variation. PLoS Genet. 2009; 5(1):e1000327.
45. Pawlyn C, Loehr A, Ashby C, et al. Loss of heterozygosity as a marker of homologous repair deficiency in multiple myeloma: a role for PARP inhibition? Leukemia. 2018; 32(7):1561-1566.
46. Spielmann M, Lupianez DG, Mundlos S. Structural variation in the 3D genome. Nat Rev Genet. 2018;19(7):453-467.
47. Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chro- matin interactions. Nature. 2012;485 (7398):376-380.
48. Daniel JA, Nussenzweig A. The AID- induced DNA damage response in chro- matin. Mol Cell. 2013;50(3):309-321.
49. Lu Z, Lieber MR, Tsai AG, et al. Human lymphoid translocation fragile zones are hypomethylated and have accessible chro- matin. Mol Cell Biol. 2015;35(7):1209-1222.
50. Martin LD, Harizanova J, Righolt CH, et al. Differential nuclear organization of translocation-prone genes in nonmalignant B cells from patients with t(14;16) as com- pared with t(4;14) or t(11;14) myeloma. Genes Chromosomes Cancer. 2013;52(6): 523-537.
51. Guan Y, Kuo WL, Stilwell JL, et al. Amplification of PVT1 contributes to the pathophysiology of ovarian and breast can- cer. Clin Cancer Res. 2007;13(19):5745- 5755.
52. Tseng YY, Moriarity BS, Gong W, et al. PVT1 dependence in cancer with MYC copy-number increase. Nature. 2014; 512(7512):82-86.
53. Peng Q, Zhou J, Zhou Q, Pan F, Zhong D, Liang H. Silencing hexokinase II gene sensi- tizes human colon cancer cells to 5-fluo- rouracil. Hepatogastroenterology. 2009; 56(90):355-360.
54. Walker BA, Mavrommatis K, Wardell CP, et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 2019;33(1):159-170.
1066
haematologica | 2020; 105(4)


































































































   222   223   224   225   226