Page 118 - Haematologica April 2020
P. 118

C. Egan et al.
forming the library preparation, exome and RNA-Seq and OncoScan assay; Louis M. Staudt (Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute) for his critical reading of our manuscript.
Funding
This work was supported by the intramural research program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health.
References
1. Swerdlow SH, Campo E, Harris NL, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition ed. Lyon, France: IARC, 2017.
2. KommalapatiA,TellaSH,DurkinM,GoRS, Goyal G. Histiocytic sarcoma: a population- based analysis of incidence, demographic disparities, and long-term outcomes. Blood. 2018;131(2):265-268.
3. Facchetti F, Pileri SA, Lorenzi L, et al. Histiocytic and dendritic cell neoplasms: what have we learnt by studying 67 cases. Virchows Arch. 2017;471(4):467-489.
4. EmileJF,AblaO,FraitagS,etal.Revisedclas- sification of histiocytoses and neoplasms of the macrophage-dendritic cell lineages. Blood. 2016;127(22):2672-2681.
5. Feldman AL, Arber DA, Pittaluga S, et al. Clonally related follicular lymphomas and histiocytic/dendritic cell sarcomas: evidence for transdifferentiation of the follicular lym- phoma clone. Blood. 2008;111(12):5433- 5439.
6. ShaoH,XiL,RaffeldM,etal.Clonallyrelat- ed histiocytic/dendritic cell sarcoma and chronic lymphocytic leukemia/small lym- phocytic lymphoma: a study of seven cases. Mod Pathol. 2011;24(11):1421-1432.
7. Feldman AL, Minniti C, Santi M, Downing JR, Raffeld M, Jaffe ES. Histiocytic sarcoma after acute lymphoblastic leukaemia: a com- mon clonal origin. Lancet Oncol. 2004;5(4):248-250.
8. Soslow RA, Davis RE, Warnke RA, Cleary ML, Kamel OW. True histiocytic lymphoma following therapy for lymphoblastic neo- plasms. Blood. 1996;87(12):5207-5212.
9. Alten J, Klapper W, Leuschner I, et al. Secondary histiocytic sarcoma may cause apparent persistence or recurrence of mini- mal residual disease in childhood acute lym- phoblastic leukemia. Pediatr Blood Cancer. 2015;62(9):1656-1660.
10. HureMC,ElcoCP,WardD,etal.Histiocytic sarcoma arising from clonally related mantle cell lymphoma. J Clin Oncol. 2012;30(5):e49- 53.
11. Brunner P, Rufle A, Dirnhofer S, et al. Follicular lymphoma transformation into his- tiocytic sarcoma: indications for a common neoplastic progenitor. Leukemia. 2014;28(9):1937-1940.
12. ChenW,LauSK,FongD,etal.Highfrequen- cy of clonal immunoglobulin receptor gene rearrangements in sporadic histiocytic/den- dritic cell sarcomas. Am J Surg Pathol. 2009;33(6):863-873.
13. Hayase E, Kurosawa M, Yonezumi M, Suzuki S, Suzuki H. Aggressive sporadic his- tiocytic sarcoma with immunoglobulin heavy chain gene rearrangement and t(14;18). Int J Hematol. 2010;92(4):659-663.
14. Emile JF, Diamond EL, Helias-Rodzewicz Z, et al. Recurrent RAS and PIK3CA mutations in Erdheim-Chester disease. Blood. 2014;124(19):3016-3019.
15. ChakrabortyR,HamptonOA,ShenX,etal. Mutually exclusive recurrent somatic muta- tions in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis.
Blood. 2014;124(19):3007-3015.
16. Diamond EL, Durham BH, Haroche J, et al.
Diverse and targetable kinase alterations drive histiocytic neoplasms. Cancer Discov. 2016;6(2):154-165.
17. Badalian-Very G, Vergilio JA, Degar BA, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010; 116(11):1919- 1923.
associated with biallelic LZTR1 variants.
Genet Med. 2018;20(10):1175-1185.
33. Tidyman WE, Rauen KA. Expansion of the RASopathies. Curr Genet Med Rep. 2016;
4(3):57-64.
34. Piotrowski A, Xie J, Liu YF, et al. Germline
loss-of-function mutations in LZTR1 predis- pose to an inherited disorder of multiple schwannomas. Nat Genet. 2014;46(2):182-
18. Shanmugam V, Griffin GK, Jacobsen ED, 187.
Fletcher CDM, Sholl LM, Hornick JL. Identification of diverse activating mutations of the RAS-MAPK pathway in histiocytic sarcoma. Mod Pathol. 2019;32(6):830-843.
19. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18(11):696-705.
20. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886-D894.
21. Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24-26.
22. Alhamdoosh M, Ng M, Wilson NJ, et al. Combining multiple tools outperforms indi- vidual methods in gene set enrichment analyses. Bioinformatics. 2017;33(3):414- 424.
23. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detec- tion and visualization from targeted DNA sequencing. PLoS Comput Biol. 2016; 12(4):e1004873.
24. Riester M, Singh AP, Brannon AR, et al. PureCN: copy number calling and SNV clas- sification using targeted short read sequenc- ing. Source Code Biol Med. 2016;11:13.
35. Steklov M, Pandolfi S, Baietti MF, et al. Mutations in LZTR1 drive human disease by dysregulating RAS ubiquitination. Science. 2018;362(6419):1177-1182.
36. Karube K, Enjuanes A, Dlouhy I, et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new rele- vant pathways and potential therapeutic tar- gets. Leukemia. 2018;32(3):675-684.
37. Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct path- ogenic mechanisms and outcomes. Nat Med. 2018;24(5):679-690.
38. Reddy A, Zhang J, Davis NS, et al. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma. Cell. 2017;171(2):481- 494.e15.
39. Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B- cell lymphoma. N Engl J Med. 2018; 378(15):1396-1407.
40. Landau DA, Sun C, Rosebrock D, et al. The evolutionary landscape of chronic lympho- cytic leukemia treated with ibrutinib target- ed therapy. Nat Commun. 2017; 8(1):2185.
41. Ross JS, Wang K, Chmielecki J, et al. The dis- tribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int J Cancer. 2016;138(4):881-890.
42. Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005; 115(1):94-
25. Kumar P, Henikoff S, Ng PC. Predicting the
effects of coding non-synonymous variants
on protein function using the SIFT algorithm.
Nat Protoc. 2009;4(7):1073-1081. 101.
26. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249.
27. Kratz CP, Niemeyer CM, Castleberry RP, et al. The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative dis- ease. Blood. 2005;106(6):2183-2185.
28. Tajan M, de Rocca Serra A, Valet P, Edouard T, Yart A. SHP2 sails from physiology to pathology. Eur J Med Genet. 2015; 58(10):509-525.
29. Nairismagi ML, Tan J, Lim JQ, et al. JAK- STAT and G-protein-coupled receptor signal- ing pathways are frequently altered in epitheliotropic intestinal T-cell lymphoma. Leukemia. 2016;30(6):1311-1319.
30. Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histio- cytosis. Blood. 2014;124(10):1655-1658.
31. Frattini V, Trifonov V, Chan JM, et al. The integrated landscape of driver genomic alter- ations in glioblastoma. Nat Genet. 2013;45(10):1141-1149.
32. Johnston JJ, van der Smagt JJ, Rosenfeld JA, et al. Autosomal recessive Noonan syndrome
43. Krauthammer M, Kong Y, Bacchiocchi A, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015; 47(9):996-1002.
44. Nichols RJ, Haderk F, Stahlhut C, et al. RAS nucleotide cycling underlies the SHP2 phos- phatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat Cell Biol. 2018;20(9):1064-1073.
45. Liu Q, Tomaszewicz K, Hutchinson L, Hornick JL, Woda B, Yu H. Somatic muta- tions in histiocytic sarcoma identified by next generation sequencing. Virchows Arch. 2016;469(2):233-241.
46. Kordes M, Roring M, Heining C, et al. Cooperation of BRAF(F595L) and mutant HRAS in histiocytic sarcoma provides new insights into oncogenic BRAF signaling. Leukemia. 2016;30(4):937-946.
47. Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291.
48. Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high- resolution. Nucleic Acids Res. 2017; 45(D1):D777-D783.
960
haematologica | 2020; 105(4)


































































































   116   117   118   119   120