Page 95 - Haematologica March 2020
P. 95

ELANE knockout restores granulopoiesis in congenital neutropenia
Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol. 2010;150(2):196-199.
6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816-821.
7. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281-2308.
8. Grenda DS, Murakami M, Ghatak J, et al. Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood. 2007;110(13): 4179-4187.
9. Nanua S, Murakami M, Xia J, et al. Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane. Blood.2011;117(13):3539-3547.
10. Nustede R, Klimiankou M, Klimenkova O, et al. ELANE mutant-specific activation of dif- ferent UPR pathways in congenital neutrope- nia. Br J Haematol. 2016;172(2):219-227.
11. Kollner I, Sodeik B, Schreek S, et al. Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood. 2006;108(2):493-500.
12. Makaryan V, Kelley ML, Fletcher B, Bolyard AA, Aprikyan AA, Dale DC. Elastase inhibitors as potential therapies for ELANE- associated neutropenia. J Leukoc Biol. 2017;102(4):1143-1151.
13. Nayak RC, Trump LR, Aronow BJ, et al. Pathogenesis of ELANE-mutant severe neu- tropenia revealed by induced pluripotent stem cells. J Clin Invest. 2015;125(8):3103- 3116.
14. Ancliff PJ, Gale RE, Watts MJ, et al. Paternal mosaicism proves the pathogenic nature of mutations in neutrophil elastase in severe congenital neutropenia. Blood. 2002;100(2): 707-709.
15. Benson KF, Horwitz M. Possibility of somat- ic mosaicism of ELA2 mutation overlooked in an asymptomatic father transmitting severe congenital neutropenia to two off- spring. Br J Haematol. 2002;118(3):923; author reply -4.
16. Makaryan V, Zeidler C, Bolyard AA, et al. The diversity of mutations and clinical out- comes for ELANE-associated neutropenia. Curr Opin Hematol. 2015;22(1):3-11.
17. Ye L, Wang J, Tan Y, et al. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treat-
ing sickle cell disease and beta-thalassemia. Proc Natl Acad Sci U S A. 2016;113(38): 10661-10665.
18. Traxler EA, Yao Y, Wang YD, et al. A genome-editing strategy to treat beta-hemo- globinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. 2016;22(9):987-990.
19. Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL. CCTop: an intu- itive, flexible and reliable CRISPR/Cas9 tar- get prediction tool. PLoS One. 2015; 10(4):e0124633.
20. Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decompo- sition. Nucleic Acids Res. 2014;42(22):e168.
21. Bajoghli B, Kuri P, Inoue D, et al. Noninvasive in toto imaging of the thymus reveals heterogeneous migratory behavior of developing T cells. J Immunol. 2015; 195(5):2177-2186.
22. Lachmann N, Ackermann M, Frenzel E, et al. Large-scale hematopoietic differentiation of human induced pluripotent stem cells pro- vides granulocytes or macrophages for cell replacement therapies. Stem Cell Reports. 2015;4(2): 282-296.
23. Dannenmann B, Zahabi A, Mir P, et al. Human iPSC-based model of severe congen- ital neutropenia reveals elevated UPR and DNA damage in CD34(+) cells preceding leukemic transformation. Exp Hematol. 2019;71-51-60.
24. Hamilton N, Sabroe I, Renshaw SA. A method for transplantation of human HSCs into zebrafish, to replace humanised murine transplantation models. F1000Res. 2018; 7:594.
25. Staal FJ, Spaink HP, Fibbe WE. Visualizing human hematopoietic stem cell trafficking in vivo using a zebrafish xenograft model. Stem Cells Dev. 2016;25(4):360-365.
26. Nasri M, Mir P, Dannenmann B, et al. Fluorescent labeling of CRISPR/Cas9 RNP for gene knockout in HSPCs and iPSCs reveals an essential role for GADD45b in stress response. Blood Adv. 2019;3(1):63-71.
27. Tidwell T, Wechsler J, Nayak RC, et al. Neutropenia-associated ELANE mutations disrupting translation initiation produce novel neutrophil elastase isoforms. Blood. 2014;123(4):562-569.
28. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR- Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765-771.
29. Allport JR, Lim YC, Shipley JM, et al. Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in
vitro. J Leukoc Biol. 2002;71(5):821-828.
30. Martinod K, Witsch T, Farley K, Gallant M, Remold-O'Donnell E, Wagner DD. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experi- mental model of deep vein thrombosis. J
Thromb Haemost. 2016;14(3):551-558.
31. Hirche TO, Atkinson JJ, Bahr S, Belaaouaj A. Deficiency in neutrophil elastase does not impair neutrophil recruitment to inflamed sites. Am J Resp Cell Mol Biol.
2004;30(4):576-584.
32. Young RE, Thompson RD, Larbi KY, et al.
Neutrophil elastase (NE)-deficient mice demonstrate a nonredundant role for NE in neutrophil migration, generation of proin- flammatory mediators, and phagocytosis in response to zymosan particles in vivo. J Immunol. 2004;172(7):4493-4502.
33. Belaaouaj A, McCarthy R, Baumann M, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998;4(5):615-618.
34. Pham CT, Ivanovich JL, Raptis SZ, Zehnbauer B, Ley TJ. Papillon-Lefevre syn- drome: correlating the molecular, cellular, and clinical consequences of cathepsin C/dipep- tidyl peptidase I deficiency in humans. J Immunol. 2004;173(12):7277-7281.
35. Cario G, Skokowa J, Wang Z, et al. Heterogeneous expression pattern of pro- and anti-apoptotic factors in myeloid pro- genitor cells of patients with severe congen- ital neutropenia treated with granulocyte colony-stimulating factor. Br J Haematol. 2005;129(2):275-278.
36. Skokowa J, Cario G, Uenalan M, et al. LEF- 1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in con- genital neutropenia. Nat Med. 2006;12(10): 1191-1197.
37. Skokowa J, Welte K. LEF-1 is a decisive tran- scription factor in neutrophil granulopoiesis. Ann N Y Acad Sci. 2007;1106:143-151.
38. Skokowa J, Welte K. Dysregulation of myeloid-specific transcription factors in con- genital neutropenia. Ann N Y Acad Sci. 2009;1176:94-100.
39. Skokowa J, Welte K. Defective G-CSFR sig- naling pathways in congenital neutropenia. Hematol Oncol Clin North Am. 2013;27(1): 75-88, viii.
40. Skokowa J, Klimiankou M, Klimenkova O, et al. Interactions among HCLS1, HAX1 and LEF-1 proteins are essential for G-CSF-trig- gered granulopoiesis. Nat Med. 2012;18 (10):1550-1559.
41. Skokowa J, Lan D, Thakur BK, et al. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtu- in-1-dependent pathway. Nat Med. 2009;15 (2):151-158.
haematologica | 2020; 105(3)
609


































































































   93   94   95   96   97