Page 249 - Haematologica March 2020
P. 249

SOX11 and TP53 status in MCL
broad range of SOX11 expression in MCL, indicating that SOX11 expression levels may be relevant for the behav- iour of the disease. The association of TP53 mutations with negative/low SOX11 mRNA expression in different MCL subtypes is an important finding, which needs to be explored in further studies.
Acknowledgments
The authors are grateful to Claudia Hermann, Rebecca Braun and Franziska Mihalik for the excellent technical assistance. BF is supported by the TÜFF-program, University of Tübingen (pro- ject 2320-0-0).
References
1. Bosch F, Jares P, Campo E, et al. PRAD- 1/cyclin D1 gene overexpression in chronic lymphoproliferative disorders: a highly spe- cific marker of mantle cell lymphoma. Blood. 1994;84(8):2726-2732.
2. Swerdlow SH, Campo, E, Seto M, Müller- Hermelink, H.-K. In: Swerdlow SH, Campo E, Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H. et al. eds. Mantle Cell Lymphoma. WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues, Lyon: IARC Press. 2017(Lyon IARC Press):285-290.
3. Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell. 2003;3(2):185-197.
4. Fu K, Weisenburger DD, Greiner TC, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005; 106(13):4315-4321.
5. Quintanilla-Martinez L, Slotta-Huspenina J, Koch I, et al. Differential diagnosis of cyclin D2+ mantle cell lymphoma based on fluo- rescence in situ hybridization and quantita- tive real-time-PCR. Haematologica. 2009; 94(11):1595-1618.
6. Salaverria I, Royo C, Carvajal-Cuenca A, et al. CCND2 rearrangements are the most fre- quent genetic events in cyclin D1(-) mantle cell lymphoma. Blood. 2013;121(8):1394- 1402.
7. Gesk S, Klapper W, Martin-Subero JI, et al. A chromosomal translocation in cyclin D1- negative/cyclin D2-positive mantle cell lym- phoma fuses the CCND2 gene to the IGK locus. Blood. 2006;108(3):1109-1110.
8. Wlodarska I, Dierickx D, Vanhentenrijk V, et al. Translocations targeting CCND2, CCND3, and MYCN do occur in t(11;14)- negative mantle cell lymphomas. Blood. 2008;111(12):5683-5690.
9. Martin-Garcia D, Navarro A, Valdes-Mas R, et al. CCND2 and CCND3 hijack immunoglobulin light chain enhancers in cyclin D1-negative mantle cell lymphoma. Blood. 2019;133(9):940-951.
10. Ek S, Dictor M, Jerkeman M, et al. Nuclear expression of the non B-cell lineage Sox11 transcription factor identifies mantle cell lymphoma. Blood. 2008;111(2):800-805.
11. Nygren L, Baumgartner Wennerholm S, et al. Prognostic role of SOX11 in a population- based cohort of mantle cell lymphoma. Blood. 2012;119(18):4215-4223.
12. Mozos A, Royo C, Hartmann E, et al. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica. 2009;94(11):1555-1562.
13. Sander B, Quintanilla-Martinez L, Ott G, et al. Mantle cell lymphoma--a spectrum from indolent to aggressive disease. Virchows Arch. 2016;468(3):245-257.
14. Fernandez V, Salamero O, Espinet B, et al. Genomic and gene expression profiling defines indolent forms of mantle cell lym- phoma. Cancer Res. 2010;70(4):1408-1418.
15. Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lym- phoma: perspectives for new targeted ther- apeutics. Nat Rev Cancer. 2007;7(10):750- 762.
16. Palomero J, Vegliante MC, Eguileor A, et al. SOX11 defines two different subtypes of mantle cell lymphoma through transcrip- tional regulation of BCL6. Leukemia. 2016;30(7):1596-1599.
17. Bea S, Amador V. Role of SOX11 and genet- ic events cooperating with cyclin D1 in mantle cell lymphoma. Curr Oncol Rep. 2017;19(6):43.
18. Ribera-Cortada I, Martinez D, Amador V, et al. Plasma cell and terminal B-cell differenti- ation in mantle cell lymphoma mainly occur in the SOX11-negative subtype. Mod Pathol. 2015;28(11):1435-1447.
19. Wasik AM, Lord M, Wang X, et al. SOXC transcription factors in mantle cell lym- phoma: the role of promoter methylation in SOX11 expression. Sci Rep. 2013;3:1400.
20. Navarro A, Clot G, Royo C, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer Res. 2012;72(20):5307- 5316.
21. Wegner M. All purpose Sox: The many roles of Sox proteins in gene expression. Int J Biochem Cell Biol. 2010;42(3):381-390.
22. Vegliante MC, Palomero J, Perez-Galan P, et al. SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma. Blood. 2013;121(12):2175-2185.
23. Palomero J, Vegliante MC, Rodriguez ML, et al. SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood. 2014;124(14):2235-2247.
24. Kuo PY, Jatiani SS, Rahman AH, et al. SOX11 augments BCR signaling to drive MCL-like tumor development. Blood. 2018;131(20):2247-2255.
25. Kuo PY, Leshchenko VV, Fazzari MJ, et al. High-resolution chromatin immunoprecipi- tation (ChIP) sequencing reveals novel bind- ing targets and prognostic role for SOX11 in mantle cell lymphoma. Oncogene. 2015;34(10):1231-1240.
26. Aukema SM, Hoster E, Rosenwald A, et al. Expression of TP53 is associated with the outcome of MCL independent of MIPI and Ki-67 in trials of the European MCL Network. Blood. 2018;131(4):417-420.
27. Yang W, Wang Y, Yu Z, et al. SOX11 regu- lates the pro-apoptosis signal pathway and predicts a favorable prognosis of mantle cell lymphoma. Int J Hematol. 2017;106(2):212- 220.
28. Wang X, Asplund AC, Porwit A, et al. The subcellular Sox11 distribution pattern iden-
tifies subsets of mantle cell lymphoma: cor- relation to overall survival. Br J Haematol. 2008;143(2):248-252.
29. Hernandez L, Fest T, Cazorla M, et al. p53 gene mutations and protein overexpression are associated with aggressive variants of mantle cell lymphomas. Blood. 1996;87(8):3351-3359.
30. Slotta-Huspenina J, Koch I, de Leval L, et al. The impact of cyclin D1 mRNA isoforms, morphology and p53 in mantle cell lym- phoma: p53 alterations and blastoid mor- phology are strong predictors of a high pro- liferation index. Haematologica. 2012;97(9):1422-1430.
31. Royo C, Navarro A, Clot G, et al. Non-nodal type of mantle cell lymphoma is a specific biological and clinical subgroup of the dis- ease. Leukemia. 2012;26(8):1895-1898.
32. Bea S, Valdes-Mas R, Navarro A, et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A. 2013;110(45):18250- 18255.
33. Wang F, Flanagan J, Su N, et al. RNAscope: a novel in situ RNA analysis platform for for- malin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22-29.
34. Yu X, Guo S, Song W, et al. Estrogen recep- tor alpha (ERalpha) status evaluation using RNAscope in situ hybridization: a reliable and complementary method for IHC in breast cancer tissues. Hum Pathol. 2017;61: 121-129.
35. Wang H, Wang MX, Su N, et al. RNAscope for in situ detection of transcriptionally active human papillomavirus in head and neck squamous cell carcinoma. J Vis Exp. 2014(85).
36. Roe CJ, Siddiqui MT, Lawson D, et al. RNA In Situ Hybridization for Epstein-Barr virus and cytomegalovirus: comparison with in situ hybridization and immunohistochem- istry. Appl Immunohistochem Mol Morphol. 2019;27(2):155-159.
37. Quintanilla-Martinez L, Pittaluga S, Miething C, et al. NPM-ALK-dependent expression of the transcription factor CCAAT/enhancer binding protein beta in ALK-positive anaplastic large cell lym- phoma. Blood. 2006;108(6):2029-2036.
38. Schmidt J, Gong S, Marafioti T, et al. Genome-wide analysis of pediatric-type fol- licular lymphoma reveals low genetic com- plexity and recurrent alterations of TNFRSF14 gene. Blood. 2016;128(8):1101- 1111.
39. Anderson CM, Zhang B, Miller M, et al. Fully automated RNAscope in situ hybridization assays for formalin-fixed paraffin-embedded cells and tissues. J Cell Biochem. 2016;117(10):2201-2208.
40. Schmid E, Klotz M, Steiner-Hahn K, et al. Detection of MET mRNA in gastric cancer in situ. Comparison with immunohisto- chemistry and sandwich immunoassays. Biotech Histochem. 2017;92(6):425-435.
41. Bingham V, McIlreavey L, Greene C, et al.
haematologica | 2020; 105(3)
763


































































































   247   248   249   250   251