Page 171 - Haematologica March 2020
P. 171

Modeling chronic myeloid leukemia in zebrafish
the protein functions, pharmacological mechanisms, and toxicology of novel targeted drugs, thus improving the cure rate for patients with CML.
Acknowledgments
The authors would like to thank Dr. Nathan Lawson and Dr. Koichi Kawakami for providing pTol vector. The authors would like to thank Dr. Zilong Wen for providing Lcp1 antibody. The authors would like to thank Dr. Kuangyu Yen, Dr. Yali Chi, Dr. Shan Xiao, Xiaohui Chen, and Yi Zheng for their helpful sug-
gestion. The authors would like to thank Christine Walsh, Hank Duan and the editor of International Science Editing for correct- ing the grammar and spelling. This work was supported by the Young Teacher National Natural Science Foundation of China (Grant No. 81700150), the Natural Science Foundation of Guangdong Province, China (Grant No. 2014A030312002), the Department of Science and Technology of Guangdong Province, China (Grant No. 2015B050501006) and Shunde Economy, Science and Technology Bureau, China (Grant No. 2015CXTD06).
References
1. von Bubnoff N, Pleyer L, Neureiter D, Faber V, Duyster J. Chronic myelogenous leukemia (CML). In: Greil R, Pleyer L, Faber V, Neureiter D, eds. Chronic Myeloid Neoplasias and Clonal Overlap Syndromes: Epidemiology, Pathophysiology and Treatment Options. Vienna: Springer Vienna, 2010:117-152.
2. Champlin RE, Golde DW. Chronic myel- ogenous leukemia: recent advances. Blood. 1985;65(5):1039-1047.
3. Cotta CV, Bueso-Ramos CE. New insights into the pathobiology and treatment of chronic myelogenous leukemia. Ann Diag Pathol. 2007;11(1):68-78.
4. Apperley JF. Chronic myeloid leukaemia. Lancet. 2015;385(9976):1447-1459.
5. Rowley JD. Letter: A new consistent chro- mosomal abnormality in chronic myeloge- nous leukaemia identified by quinacrine flu- orescence and Giemsa staining. Nature. 1973;243(5405):290-293.
6. Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 1996;88(7):2375-2384.
7. Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell. 1986; 47(2):277-284.
8. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myel- ogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212-214.
9. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172- 183.
10. An X, Tiwari AK, Sun Y, Ding P-R, Ashby CR, Jr., Chen Z-S. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review. Leuk Res. 2010;34(10):1255-1268.
11. Ross TS, Mgbemena VE. Re-evaluating the role of BCR/ABL in chronic myelogenous leukemia. Mol Cell Oncol. 2014;1(3): e963450-e963450.
12. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14(10):721-731.
13. Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio). University of Oregon Press, Eugene., 2000.
14. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryon- ic development of the zebrafish. Dev Dyn.
1995;203(3):253-310.
15. Hall C, Flores MV, Storm T, Crosier K,
Crosier P. The zebrafish lysozyme C pro- moter drives myeloid-specific expression in transgenic fish. Bmc Dev Biol. 2007;7:42.
16. He YP, Wertheim JA, Xu LW, et al. The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myel- ogenous leukemia-like disease by bcr/abl. Blood. 2002;99(8):2957-2968.
17. Jin H, Sood R, Xu J, et al. Definitive hematopoietic stem/progenitor cells mani- fest distinct differentiation output in the zebrafish VDA and PBI. Development. 2009;136(4):647-654.
18. Adam A, Bartfai R, Lele Z, Krone PH, Orban L. Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. Exp Cell Res. 2000;256(1):282- 290.
27. Zhu JF, Li ZJ, sen Zhang G, et al. Icaritin Shows Potent Anti-Leukemia Activity on Chronic Myeloid Leukemia In Vitro and In Vivo by Regulating MAPK/ERK/JNK and JAK2/STAT3/AKT Signalings. Plos One. 2011;6(8): e23720.
28. Zhu S, Wang Z, Li Z, et al. Icaritin suppress- es multiple myeloma, by inhibiting IL- 6/JAK2/STAT3. Oncotarget. 2015;6(12):10460-10472.
29. Chen M, Turhan AG, Ding H, Lin Q, Meng K, Jiang X. Targeting BCR-ABL(+) stem/progenitor cells and BCR-ABL-T315I mutant cells by effective inhibition of the BCR-ABL-Tyr177-GRB2 complex. Oncotarget. 2017;8(27):43662-43677.
30. Xia P, Xu X-Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602-1609.
19. Halloran MC, Sato-Maeda M, Warren JT, et
al. Laser-induced gene expression in specific
cells of transgenic zebrafish. Development. 2000;127(9):1953-1960. 175.
20. Roumiantsev S, de Aos IE, Varticovski L, Ilaria RL, Van Etten RA. The Src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leuke- mogenesis or activation of phosphatidyli- nositol 3-kinase. Blood. 2001;97(1):4-13.
21. Koschmieder S, Gottgens B, Zhang P, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood. 2005; 105(1):324- 334.
22. Honda H, Oda H, Suzuki T, et al. Deve- lopment of acute lymphoblastic leukemia and myeloproliferative disorder in trans- genic mice expressing p210(bcr/abl): A novel transgenic model for human Ph-1-positive leukemias. Blood. 1998;91(6):2067-2075.
23. Huettner CS, Koschmieder S, Iwasaki H, et al. Inducible expression of BCR/ABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syn- drome. Blood. 2003;102(9):3363-3370.
24. Sabattini E, Bacci F, Sagramoso C, Pileri SA. WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: an overview. Pathologica. 2010;102(3):83-87.
25. Dowding C, Th'ng KH, Goldman JM, Galton DA. Increased T-lymphocyte num- bers in chronic granulocytic leukemia before treatment. Exp Hematol. 1984;12(10):811- 815.
26. Mason JE Jr, DeVita VT, Canellos GP. Thrombocytosis in chronic granulocytic leukemia: incidence and clinical significance. Blood. 1974;44(4):483-487.
32. Sadovnik I, Hoelbl-Kovacic A, Herrmann H, et al. Identification of CD25 as STAT5- Dependent Growth Regulator of Leukemic Stem Cells in Ph+ CML. Clin Cancer Res. 2016;22(8):2051-2061.
33. Wong J, Welschinger R, Hewson J, Bradstock KF, Bendall LJ. Efficacy of dual PI- 3K and mTOR inhibitors in Vitro and in Vivo in acute lymphoblastic leukemia. Oncotarget. 2014;5(21):10460-10472.
34. Deng L, Jiang L, Lin X-H, et al. The PI3K/mTOR dual inhibitor BEZ235 sup- presses proliferation and migration and reverses multidrug resistance in acute myeloid leukemia. Acta Pharmacol Sin. 2017;38(3):382-391.
35. Xin P, Li C, Zheng Y, et al. Efficacy of the dual PI3K and mTOR inhibitor NVP- BEZ235 in combination with imatinib mesylate against chronic myelogenous leukemia cell lines. Drug Des Deve Ther. 2017;11:1115-1126.
36. Bendell JC, Kelley RK, Shih KC, et al. A Phase I dose-escalation study to assess safe- ty, tolerability, pharmacokinetics, and pre- liminary efficacy of the dual mTORC1/mTORC2 kinase inhibitor CC-223 in patients with advanced solid tumors or multiple myeloma. Cancer. 2015; 121(19):3481-3490.
37. Neviani P, Harb JG, Oaks JJ, et al. PP2A-acti- vating drugs selectively eradicate TKI-resis- tant chronic myeloid leukemic stem cells. J Clin Invest. 2013;123(10):4144-4157.
38. Pellicano F, Holyoake TL. Assembling defenses against therapy-resistant leukemic stem cells: Bcl6 joins the ranks. J Exp Med. 2011;208(11):2155-2158.
31. Polivka J Jr, Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164-
haematologica | 2020; 105(3)
685


































































































   169   170   171   172   173