Page 117 - Haematologica March 2020
P. 117

Novel PDE9i therapy for sickle cell disease
with sickle cell anemia. Pediatr Blood
Cancer. 2009;52(5):609-615.
19. Kassim AA, DeBaun MR. Sickle cell dis-
ease, vasculopathy, and therapeutics. Annu
Rev Med. 2013;64:451-466.
20. Charache S, Terrin ML, Moore RD, et al.
Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995;332(20):1317-1322.
21. Heeney MM, Ware RE. Hydroxyurea for children with sickle cell disease. Pediatr Clin North Am. 2008;55(2):483-501, x.
22. Maier-Redelsperger M, de Montalembert M, Flahault A, et al. Fetal hemoglobin and F-cell responses to long-term hydroxyurea treatment in young sickle cell patients. The French Study Group on Sickle Cell Disease. Blood. 1998;91(12):4472-4479.
23. Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, Nathan DG. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest. 1984; 74(2):652-656.
24. Wang WC, Ware RE, Miller ST, et al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, ran- domised, controlled trial (BABY HUG). Lancet. 2011;377(9778):1663-1672.
25. Erard F, Dean A, Schechter AN. Inhibitors of cell division reversibly modify hemoglo- bin concentration in human ery- throleukemia K562 cells. Blood. 1981; 58(6):1236-1239.
26. Cokic VP, Smith RD, Beleslin-Cokic BB, et al. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest. 2003;111(2):231-239.
27. Odievre MH, Bony V, Benkerrou M, et al. Modulation of erythroid adhesion receptor expression by hydroxyurea in children with sickle cell disease. Haematologica. 2008;93(4):502-510.
28. Stettler N, McKiernan CM, Melin CQ, Adejoro OO, Walczak NB. Proportion of adults with sickle cell anemia and pain crises receiving hydroxyurea. JAMA. 2015; 313(16):1671-1672.
29. Adams-Graves P, Bronte-Jordan L. Recent treatment guidelines for managing adult patients with sickle cell disease: challenges in access to care, social issues, and adher- ence. Expert Rev Hematol. 2016;9(6):541- 552.
30. Sheehan VA, Luo Z, Flanagan JM, et al. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on labo- ratory and clinical phenotypes. Am J Hematol. 2013;88(7):571-576.
31. Steinberg MH. Determinants of fetal hemoglobin response to hydroxyurea. Semin Hematol. 1997;34(3 Suppl 3):8-14.
32. Dover GJ, Humphries RK, Moore JG, et al.
Hydroxyurea induction of hemoglobin F production in sickle cell disease: relation- ship between cytotoxicity and F cell pro- duction. Blood. 1986;67(3):735-738.
33. Lanzkron S, Haywood C, Jr., Hassell KL, Rand C. Provider barriers to hydroxyurea use in adults with sickle cell disease: a sur- vey of the Sickle Cell Disease Adult Provider Network. J Natl Med Assoc. 2008; 100(8):968-973.
34. Meyappan JD, Lampl M, Hsu LL. Parents' assessment of risk in sickle cell disease treatment with hydroxyurea. J Pediatr Hematol Oncol. 2005;27(12):644-650.
35. Berthaut I, Guignedoux G, Kirsch-Noir F, et al. Influence of sickle cell disease and treat- ment with hydroxyurea on sperm parame- ters and fertility of human males. Haematologica. 2008;93(7):988-993.
36. Soderling SH, Bayuga SJ, Beavo JA. Identification and characterization of a novel family of cyclic nucleotide phospho- diesterases. J Biol Chem. 1998; 273(25): 15553-15558.
37. Soderling SH, Bayuga SJ, Beavo JA. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proc Natl Acad Sci U S A. 1998;95(15):8991- 8996.
38. Almeida CB, Scheiermann C, Jang JE, et al. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood. 2012;120(14):2879-2888.
39. Almeida CB, Traina F, Lanaro C, et al. High expression of the cGMP-specific phospho- diesterase, PDE9A, in sickle cell disease (SCD) and the effects of its inhibition in erythroid cells and SCD neutrophils. Br J Haematol. 2008;142(5):836-844.
40. Miguel LI, Almeida CB, Traina F, et al. Inhibition of phosphodiesterase 9A reduces cytokine-stimulated in vitro adhesion of neutrophils from sickle cell anemia individ- uals. Inflamm Res. 2011;60(7):633-642.
41. Thompson WJ, Appleman MM. Multiple cyclic nucleotide phosphodiesterase activi- ties from rat brain. Biochemistry. 1971; 10(2):311-316.
42. Ryan TM, Townes TM, Reilly MP, et al. Human sickle hemoglobin in transgenic mice. Science. 1990;247(4942):566-568.
43. EC L. Peripheral Blood Smear. In: Walker HK HW, Hurst JW, ed. Clinical Methods: The History, Physical, and Laboratory Examinations. Boston: Butterworths; 1990.
44. Kleihauer E, Braun H, Betke K. [Demonstration of fetal hemoglobin in ery- throcytes of a blood smear]. Klin Wochenschr. 1957;35(12):637-638.
45. Fairbanks VF, Ziesmer SC, O'Brien PC. Methods for measuring plasma hemoglo- bin in micromolar concentration compared. Clin Chem. 1992;38(1):132-140.
46. Kato GJ, McGowan V, Machado RF, et al.
Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resist- ance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood. 2006;107(6):2279- 2285.
47. Dezfulian C, Raat N, Shiva S, Gladwin MT. Role of the anion nitrite in ischemia-reper- fusion cytoprotection and therapeutics. Cardiovasc Res. 2007;75(2):327-338.
48. Zhang H, Xu H, Weihrauch D, et al. Inhibition of myeloperoxidase decreases vascular oxidative stress and increases vasodilatation in sickle cell disease mice. J Lipid Res. 2013;54(11):3009-3015.
49. da Silva FH, Pereira MN, Franco-Penteado CF, De Nucci G, Antunes E, Claudino MA. Phosphodiesterase-9 (PDE9) inhibition with BAY 73-6691 increases corpus caver- nosum relaxations mediated by nitric oxide-cyclic GMP pathway in mice. Int J Impot Res. 2013;25(2):69-73.
50. Hutson PH, Finger EN, Magliaro BC, et al. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl- 1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1- (tetrahydro-2H-py ran-4-yl)-1,5-dihydro- 4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology. 2011;61(4):665-676.
51. Vardigan JD, Converso A, Hutson PH, Uslaner JM. The selective phosphodi- esterase 9 (PDE9) inhibitor PF-04447943 attenuates a scopolamine-induced deficit in a novel rodent attention task. J Neurogenet. 2011;25(4):120-126.
52. van der Staay FJ, Rutten K, Barfacker L, et al. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology. 2008;55(5): 908-918.
53. Prickaerts J, Heckman PRA, Blokland A. Investigational phosphodiesterase inhibitors in phase I and phase II clinical tri- als for Alzheimer's disease. Expert Opin Investig Drugs. 2017;26(9):1033-1048.
54. Heckman PR, Wouters C, Prickaerts J. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer's disease: a translational overview. Curr Pharm Des. 2015;21(3):317- 331.
55. Saavedra A, Giralt A, Arumi H, Alberch J, Perez-Navarro E. Regulation of hippocam- pal cGMP levels as a candidate to treat cog- nitive deficits in Huntington's disease. PLoS One. 2013;8(9):e73664.
56. Pule GD, Mowla S, Novitzky N, Wiysonge CS, Wonkam A. A systematic review of known mechanisms of hydroxyurea- induced fetal hemoglobin for treatment of sickle cell disease. Expert Rev Hematol. 2015;8(5):669-679.
haematologica | 2020; 105(3)
631


































































































   115   116   117   118   119