Page 49 - 2020_02-Haematologica-web
P. 49

Innate immune cells in sickle cell disease
biome. Nature. 2015;525(7570):528-532.
58. Rana K, Pantoja K, Xiao L. Bone marrow neutrophil aging in sickle cell disease mice is associated with impaired osteoblast func- tions. Biochem Biophys Rep. 2018;16:110-
114.
59. Chen G, Zhang D, Fuchs TA, Manwani D,
Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123(24):3818-3827.
60. Ghosh S, Adisa OA, Chappa P, et al. Extracellular hemin crisis triggers acute chest syndrome in sickle mice. J Clin Invest. 2013;123(11):4809-4820.
61. Evans C, Orf K, Horvath E, et al. Impairment of neutrophil oxidative burst in children with sickle cell disease is associated with heme oxygenase-1. Haematologica. 2015;100(12):1508-1516.
62. Canalli AA, Conran N, Fattori A, Saad ST, Costa FF. Increased adhesive properties of eosinophils in sickle cell disease. Exp Hematol. 2004;32(8):728-734.
63. Pallis FR, Conran N, Fertrin KY, Olalla Saad ST, Costa FF, Franco-Penteado CF. Hydroxycarbamide reduces eosinophil adhesion and degranulation in sickle cell anaemia patients. Br J Haematol. 2014;164 (2):286-295.
64. Conran N, Saad ST, Costa FF, Ikuta T. Leukocyte numbers correlate with plasma levels of granulocyte-macrophage colony- stimulating factor in sickle cell disease. Ann Hematol. 2007;86(4):255-261.
65. Qari MH, Zaki WA. Flow cytometric assess- ment of leukocyte function in sickle cell ane- mia. Hemoglobin. 2011;35(4):367-381.
66. Abraham AA, Lang H, Meier ER, et al. Characterization of natural killer cells expressing markers associated with maturi- ty and cytotoxicity in children and young adults with sickle cell disease. Pediatr Blood Cancer. 2019;66(5):e27601.
67. Al Najjar S, Adam S, Ahmed N, Qari M. Markers of endothelial dysfunction and leu- cocyte activation in Saudi and non-Saudi haplotypes of sickle cell disease. Ann Hematol. 2017;96(1):141-146.
68. Dedeken L, Le PQ, Azzi N, et al. Haematopoietic stem cell transplantation for severe sickle cell disease in childhood: a sin- gle centre experience of 50 patients. Br J Haematol. 2014;165(3):402-408.
69. Wallace KL, Linden J. Adenosine A2A recep- tors induced on iNKT and NK cells reduce pulmonary inflammation and injury in mice with sickle cell disease. Blood. 2010;116(23):5010-5020.
70. Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d- dependent NKT cell activation. J Exp Med. 2006;203(12):2639-2648.
71. Wallace KL, Marshall MA, Ramos SI, et al. NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines. Blood. 2009;114
(3):667-676.
72. Lin G, Field JJ, Yu JC, et al. NF-kappaB is acti-
vated in CD4+ iNKT cells by sickle cell dis- ease and mediates rapid induction of adeno- sine A2A receptors. PLoS One. 2013;8 (10):e74664.
73. Yu JC, Lin G, Field JJ, Linden J. Induction of antiinflammatory purinergic signaling in activated human iNKT cells. JCI Insight. 2018;3(17).
74. Field JJ, Lin G, Okam MM, et al. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson. Blood. 2013;121(17):3329-3334.
75. Field JJ, Majerus E, Gordeuk VR, et al. Randomized phase 2 trial of regadenoson for treatment of acute vaso-occlusive crises in sickle cell disease. Blood Adv. 2017;1(20):1645-1649.
76. Field JJ, Majerus E, Ataga KI, et al. NNKTT120, an anti-iNKT cell monoclonal antibody, produces rapid and sustained iNKT cell depletion in adults with sickle cell disease. PLoS One. 2017;12(2):e0171067.
77. Villagra J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ. Platelet activation in patients with sickle disease, hemolysis-asso- ciated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood. 2007;110(6):2166-2172.
78. Garrido VT, Sonzogni L, Mtatiro SN, Costa FF, Conran N, Thein SL. Association of plas- ma CD40L with acute chest syndrome in sickle cell anemia. Cytokine. 2017;97:104- 107.
79. Brittain HA, Eckman JR, Swerlick RA, Howard RJ, Wick TM. Thrombospondin from activated platelets promotes sickle ery- throcyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion. Blood. 1993;81(8):2137- 2143.
80. Heeney MM, Hoppe CC, Abboud MR, et al. A multinational trial of prasugrel for sickle cell vaso-occlusive events. N Engl J Med. 2016;374(7):625-635.
81. Kanter J, Abboud MR, Kaya B, et al. Ticagrelor does not impact patient-reported pain in young adults with sickle cell disease: a multicentre, randomised phase IIb study. Br J Haematol. 2019;184(2):269-278.
82. Vogel S, Arora T, Wang X, et al. The platelet NLRP3 inflammasome is upregulated in sickle cell disease via HMGB1/TLR4 and Bruton tyrosine kinase. Blood Adv. 2018;2(20): 2672-2680.
83. Davila J, Manwani D, Vasovic L, et al. A novel inflammatory role for platelets in sick- le cell disease. Platelets. 2015;26(8):726-729.
84. Vinchi F, Costa da Silva M, Ingoglia G, et al. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood. 2016;127(4):473-486.
85. Dutra FF, Alves LS, Rodrigues D, et al. Hemolysis-induced lethality involves inflam- masome activation by heme. Proc Natl Acad Sci U S A. 2014;111(39):E4110-4118.
86. Khaibullina A, Adjei EA, Afangbedji N, et al. RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice. Haematologica. 2018;103(5):787-798.
87. Zhao S, Adebiyi MG, Zhang Y, et al. Sphingosine-1-phosphate receptor 1 medi- ates elevated IL-6 signaling to promote chronic inflammation and multitissue dam- age in sickle cell disease. FASEB J. 2018;32(5):2855-2865.
88. Afrin LB. Mast cell activation syndrome as a significant comorbidity in sickle cell disease. Am J Med Sci. 2014;348(6):460-464.
89. Allali S, Lionnet F, Mattioni S, et al. Plasma histamine elevation in a large cohort of sick- le cell disease patients. Br J Haematol. 2019;186(1):125-129.
90. Brandow AM, Wandersee NJ, Dasgupta M, et al. Substance P is increased in patients with sickle cell disease and associated with haemolysis and hydroxycarbamide use. Br J Haematol. 2016;175(2):237-245.
91. Wagner MC, Eckman JR, Wick TM. Histamine increases sickle erythrocyte adherence to endothelium. Br J Haematol. 2006;132(4):512-522.
92. Brooks AC, Whelan CJ, Purcell WM. Reactive oxygen species generation and his- tamine release by activated mast cells: mod- ulation by nitric oxide synthase inhibition. Br J Pharmacol. 1999;128(3):585-590.
93. Vincent L, Vang D, Nguyen J, et al. Mast cell activation contributes to sickle cell pathobi- ology and pain in mice. Blood. 2013;122(11):1853-1862.
94. Amadesi S, Nie J, Vergnolle N, et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor poten- tial vanilloid receptor 1 to induce hyperalge- sia. J Neurosci. 2004;24(18):4300-4312.
95. Kohli DR, Li Y, Khasabov SG, et al. Pain- related behaviors and neurochemical alter- ations in mice expressing sickle hemoglobin: modulation by cannabinoids. Blood. 2010;116(3):456-465.
96. Stankovic Stojanovic K, Thioliere B, Garandeau E, Lecomte I, Bachmeyer C, Lionnet F. Chronic myeloid leukaemia and sickle cell disease: could imatinib prevent vaso-occlusive crisis? Br J Haematol. 2011;155(2):271-272.
97. Vang D, Paul JA, Nguyen J, et al. Small-mole- cule nociceptin receptor agonist ameliorates mast cell activation and pain in sickle mice. Haematologica. 2015;100(12):1517-1525.
98. Navines-Ferrer A, Serrano-Candelas E, Lafuente A, Munoz-Cano R, Martin M, Gastaminza G. MRGPRX2-mediated mast cell response to drugs used in perioperative procedures and anaesthesia. Sci Rep. 2018;8(1):11628.
99. Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. A mast-cell-specific recep- tor mediates neurogenic inflammation and pain. Neuron. 2019;101 (3):412-420.
100. Tran H, Mittal A, Sagi V, et al. Mast cells induce blood brain barrier damage in SCD by causing endoplasmic reticulum stress in the endothelium. Front Cell Neurosci. 2019;13:56.
haematologica | 2020; 105(2)
283


































































































   47   48   49   50   51