Page 48 - 2020_02-Haematologica-web
P. 48

S. Allali et al.
patients with sickle cell disease. Clin Lab
Haematol. 2002;24(2):81-88.
8. Inwald DP, Kirkham FJ, Peters MJ, et al.
Platelet and leucocyte activation in child- hood sickle cell disease: association with nocturnal hypoxaemia. Br J Haematol. 2000;111(2):474-481.
9. Sloma I, Zilber MT, Charron D, Girot R, Tamouza R, Gelin C. Upregulation and atypical expression of the CD1 molecules on monocytes in sickle cell disease. Hum Immunol. 2004;65(11):1370-1376.
10. Dias-Da-Motta P, Arruda VR, Muscara MN, et al. The release of nitric oxide and superox- ide anion by neutrophils and mononuclear cells from patients with sickle cell anaemia. Br J Haematol. 1996;93(2):333-340.
11. Marcal LE, Dias-da-Motta PM, Rehder J, et al. Up-regulation of NADPH oxidase compo- nents and increased production of interferon- gamma by leukocytes from sickle cell disease patients. Am J Hematol. 2008;83(1): 41-45.
12. Setty BN, Key NS, Rao AK, et al. Tissue fac- tor-positive monocytes in children with sickle cell disease: correlation with biomark- ers of haemolysis. Br J Haematol. 2012;157(3):370-380.
13. Ragab SM, Soliman MA. Tissue factor-posi- tive monocytes expression in children with sickle cell disease: clinical implication and relation to inflammatory and coagulation markers. Blood Coagul Fibrinolysis. 2016;27(8):862-869.
14. Solovey A, Somani A, Belcher JD, et al. A monocyte-TNF-endothelial activation axis in sickle transgenic mice: therapeutic benefit from TNF blockade. Am J Hematol. 2017;92(11):1119-1130.
15. Brittain JE, Knoll CM, Ataga KI, Orringer EP, Parise LV. Fibronectin bridges monocytes and reticulocytes via integrin alpha4beta1. Br J Haematol. 2008;141(6):872-881.
16. Selvaraj SK, Giri RK, Perelman N, Johnson C, Malik P, Kalra VK. Mechanism of mono- cyte activation and expression of proinflam- matory cytochemokines by placenta growth factor. Blood. 2003;102(4):1515-1524.
17. Perelman N, Selvaraj SK, Batra S, et al. Placenta growth factor activates monocytes and correlates with sickle cell disease sever- ity. Blood. 2003;102(4):1506-1514.
18. Sundaram N, Tailor A, Mendelsohn L, et al. High levels of placenta growth factor in sick- le cell disease promote pulmonary hyperten- sion. Blood. 2010;116(1):109-112.
19. Zennadi R, Chien A, Xu K, Batchvarova M, Telen MJ. Sickle red cells induce adhesion of lymphocytes and monocytes to endotheli- um. Blood. 2008;112(8):3474-3483.
20. Chaar V, Picot J, Renaud O, et al. Aggregation of mononuclear and red blood cells through an {alpha}4{beta}1-Lu/basal cell adhesion molecule interaction in sickle cell disease. Haematologica. 2010;95(11):1841-1848.
21. Dagur PK, McCoy JP, Nichols J, et al. Haem augments and iron chelation decreases toll- like receptor 4 mediated inflammation in monocytes from sickle cell patients. Br J Haematol. 2018;181(4):552-554.
22. Liu Y, Jing F, Yi W, et al. HO-1(hi) patrolling monocytes protect against vaso-occlusion in sickle cell disease. Blood. 2018;131(14):1600- 1610.
23. Liu Y, Zhong H, Bao W, et al. Patrolling monocytes scavenge endothelial adherent sickle RBC: a novel mechanism of inhibition of vaso-occlusion in SCD. Blood. 2019;134(7):579-590.
24. Yazdanbakhsh K, Ware RE, Noizat-Pirenne F. Red blood cell alloimmunization in sickle cell disease: pathophysiology, risk factors, and transfusion management. Blood.
2012;120(3):528-537.
25. Godefroy E, Liu Y, Shi P, et al. Altered heme-
mediated modulation of dendritic cell func- tion in sickle cell alloimmunization. Haematologica. 2016;101(9):1028-1038.
26. Abhishek K, Kumar R, Arif E, Patra PK, Choudhary SB, Sohail M. Induced expres- sion of bone morphogenetic protein-6 and Smads signaling in human monocytes derived dendritic cells during sickle-cell pathology with orthopedic complications. Biochem Biophys Res Commun. 2010;396(4):950-955.
41. Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci U S A. 2002;99(5):3047-3051.
42. Hidalgo A, Chang J, Jang JE, Peired AJ, Chiang EY, Frenette PS. Heterotypic interac- tions enabled by polarized neutrophil microdomains mediate thromboinflamma- tory injury. Nat Med. 2009;15(4):384-391.
43. Zhang D, Xu C, Manwani D, Frenette PS. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood. 2016;127(7):801-
27. Anyaegbu CC, Okpala IE, Akren'Ova YA,
Salimonu LS. Peripheral blood neutrophil 809.
count and candidacidal activity correlate with the clinical severity of sickle cell anaemia (SCA). Eur J Haematol. 1998;60(4): 267-268.
28. Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639-1644.
29. Castro O, Brambilla DJ, Thorington B, et al. The acute chest syndrome in sickle cell dis- ease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood. 1994;84(2):643-649.
30. Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288-294.
31. Wigfall DR, Ware RE, Burchinal MR, Kinney TR, Foreman JW. Prevalence and clinical cor- relates of glomerulopathy in children with sickle cell disease. J Pediatr. 2000;136(6):749- 753.
32. Wali Y, Beshlawi I, Fawaz N, et al. Coexistence of sickle cell disease and severe congenital neutropenia: first impressions can be deceiving. Eur J Haematol. 2012;89(3): 245-249.
33. Adler BK, Salzman DE, Carabasi MH, Vaughan WP, Reddy VV, Prchal JT. Fatal sick- le cell crisis after granulocyte colony-stimu- lating factor administration. Blood. 2001;97(10):3313-3314.
34. Pieters RC, Rojer RA, Saleh AW, Saleh AE, Duits AJ. Molgramostim to treat SS-sickle cell leg ulcers. Lancet. 1995;345(8948):528.
35. Charache S. Mechanism of action of hydroxyurea in the management of sickle cell anemia in adults. Semin Hematol. 1997;34(3 Suppl 3):15-21.
36. Fadlon E, Vordermeier S, Pearson TC, et al. Blood polymorphonuclear leukocytes from the majority of sickle cell patients in the cri- sis phase of the disease show enhanced adhesion to vascular endothelium and increased expression of CD64. Blood. 1998;91(1):266-274.
37. Lum AF, Wun T, Staunton D, Simon SI. Inflammatory potential of neutrophils detected in sickle cell disease. Am J Hematol. 2004;76(2):126-133.
38. Okpala I, Daniel Y, Haynes R, Odoemene D, Goldman J. Relationship between the clini- cal manifestations of sickle cell disease and the expression of adhesion molecules on white blood cells. Eur J Haematol. 2002;69(3):135-144.
39. Benkerrou M, Delarche C, Brahimi L, et al. Hydroxyurea corrects the dysregulated L- selectin expression and increased H(2)O(2) production of polymorphonuclear neu- trophils from patients with sickle cell ane- mia. Blood. 2002;99(7):2297-2303.
40. Almeida CB, Scheiermann C, Jang JE, et al. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso- occlusive events in sickle cell disease mice. Blood. 2012;120(14):2879-2888.
44. Morikis VA, Chase S, Wun T, Chaikof EL, Magnani JL, Simon SI. Selectin catch-bonds mechanotransduce integrin activation and neutrophil arrest on inflamed endothelium under shear flow. Blood. 2017;130(19):2101- 2110.
45. Chang J, Patton JT, Sarkar A, Ernst B, Magnani JL, Frenette PS. GMI-1070, a novel pan-selectin antagonist, reverses acute vas- cular occlusions in sickle cell mice. Blood. 2010;116(10):1779-1786.
46. Telen MJ, Wun T, McCavit TL, et al. Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood. 2015;125(17):2656-2664.
47. Ataga KI, Kutlar A, Kanter J, et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N Engl J Med. 2017;376(5):429-439.
48. Telen MJ, Batchvarova M, Shan S, et al. Sevuparin binds to multiple adhesive ligands and reduces sickle red blood cell-induced vaso-occlusion. Br J Haematol. 2016;175(5): 935-948.
49. White J, Lindgren M, Liu K, Gao X, Jendeberg L, Hines P. Sevuparin blocks sickle blood cell adhesion and sickle-leucocyte rolling on immobilized L-selectin in a dose dependent manner. Br J Haematol. 2019;184 (5):873-876.
50. Manwani D, Chen G, Carullo V, et al. Single-dose intravenous gammaglobulin can stabilize neutrophil Mac-1 activation in sick- le cell pain crisis. Am J Hematol. 2015; 90(5):381-385.
51. Polanowska-Grabowska R, Wallace K, Field JJ, et al. P-selectin-mediated platelet-neu- trophil aggregate formation activates neu- trophils in mouse and human sickle cell dis- ease. Arterioscler Thromb Vasc Biol. 2010;30(12):2392-2399.
52. Bennewitz MF, Jimenez MA, Vats R, et al. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. JCI Insight. 2017;2(1):e89761.
53. Li J, Kim K, Hahm E, et al. Neutrophil AKT2 regulates heterotypic cell-cell interactions during vascular inflammation. J Clin Invest. 2014;124(4):1483-1496.
54. Kim K, Li J, Barazia A, et al. ARQ 092, an orally-available, selective AKT inhibitor, attenuates neutrophil-platelet interactions in sickle cell disease. Haematologica. 2017;102(2):246-259.
55. Jimenez MA, Novelli E, Shaw GD, Sundd P. Glycoprotein Ibalpha inhibitor (CCP-224) prevents neutrophil-platelet aggregation in Sickle Cell Disease. Blood Adv. 2017;1(20): 1712-1716.
56. Koehl B, Nivoit P, El Nemer W, et al. The endothelin B receptor plays a crucial role in the adhesion of neutrophils to the endothe- lium in sickle cell disease. Haematologica. 2017;102(7):1161-1172.
57. Zhang D, Chen G, Manwani D, et al. Neutrophil ageing is regulated by the micro-
282
haematologica | 2020; 105(2)


































































































   46   47   48   49   50