Page 37 - 2020_02-Haematologica-web
P. 37

Hepcidin and iron disorders
subtypes reveals variations in severity of iron overload and clinical disease. Blood. 2018;132(1):101-110.
80. McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead K, Stevenson DA, Bayrak-Toydemir P. Hereditary hemor- rhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet. 2015;6:1.
81. Pietrangelo A. Ferroportin disease: patho- genesis, diagnosis and treatment. Haematologica. 2017;102(12):1972-1984.
82. Jenkitkasemwong S, Wang CY, Coffey R, et al. SLC39A14 is required for the develop- ment of hepatocellular iron overload in murine models of hereditary hemochro- matosis. Cell Metab. 2015;22(1):138-150.
83. Oudit GY, Sun H, Trivieri MG, et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-over- load cardiomyopathy. Nat Med. 2003;9(9):1187-1194.
84. Weiss G, Ganz T, Goodnough LT. Anemia of inflammation. Blood. 2019;133(1):40-50.
85. Camaschella C. How I manage patients with atypical microcytic anaemia. Br J Haematol. 2013;160(1):12-24.
86. Nai A, Pagani A, Silvestri L, et al. TMPRSS6 rs855791 modulates hepcidin transcription in vitro and serum hepcidin levels in normal individuals. Blood. 2011;118(16):4459-4462.
87. Kiss JE, Vassallo RR. How do we manage iron deficiency after blood donation? Br J Haematol. 2018;181(5):590-603.
88. Guernsey DL, Jiang H, Campagna DR, et al. Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic auto- somal recessive congenital sideroblastic ane- mia. Nat Genet. 2009;41(6):651-653.
89. Camaschella C, Campanella A, De Falco L, et al. The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload. Blood. 2007;110(4):1353-1358.
90. Schmitz-Abe K, Ciesielski SJ, Schmidt PJ, et al. Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9. Blood. 2015;126(25): 2734-2738.
91. Ducamp S, Fleming MD. The molecular genetics of sideroblastic anemia. Blood. 2019;133(1):59-69.
92. Chakraborty PK, Schmitz-Abe K, Kennedy EK, et al. Mutations in TRNT1 cause con- genital sideroblastic anemia with immunod- eficiency, fevers, and developmental delay (SIFD). Blood. 2014;124(18):2867-2871.
93. Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 dis- eases and injuries for 195 countries, 1990- 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211-1259.
94. Camaschella C. Iron-deficiency anemia. N Engl J Med. 2015;372(19):1832-1843.
95. Lopez A, Cacoub P, Macdougall IC, Peyrin- Biroulet L. Iron deficiency anaemia. Lancet. 2016;387(10021):907-916.
96. Camaschella C. Iron deficiency. Blood. 2019;133(1):30-39.
97. Ganz T. Anemia of inflammation. N Engl J Med. 2019;381(12):1148-1157.
98. Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011- 1023.
99. Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science. 2012;338 (6108):768-772.
100. Nairz M, Dichtl S, Schroll A, et al. Iron and innate antimicrobial immunity-Depriving
the pathogen, defending the host. J Trace
Elem Med Biol. 2018;48:118-133.
101.Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host inter- face. Nat Rev Microbiol. 2012;10(8):525-537. 102. Stefanova D, Raychev A, Arezes J, et al. Endogenous hepcidin and its agonist medi- ate resistance to selected infections by clear- ing non-transferrin-bound iron. Blood.
2017;130(3):245-257.
103. Song SN, Tomosugi N, Kawabata H,
Ishikawa T, Nishikawa T, Yoshizaki K. Down-regulation of hepcidin resulting from long-term treatment with an anti-IL-6 recep- tor antibody (tocilizumab) improves anemia of inflammation in multicentric Castleman disease. Blood. 2010;116(18):3627-3634.
104. Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC. Inappropriate expression of hepcidin is asso- ciated with iron refractory anemia: implica- tions for the anemia of chronic disease. Blood. 2002;100(10):3776-3781.
105. Ganz T, Jung G, Naeim A, et al. Immunoassay for human serum erythrofer- rone. Blood. 2017;130(10):1243-1246.
106. Rivella S. Iron metabolism under conditions of ineffective erythropoiesis in beta-tha- lassemia. Blood. 2019;133(1):51-58.
107. Camaschella C, Nai A. Ineffective erythro- poiesis and regulation of iron status in iron loading anaemias. Br J Haematol. 2016;172 (4):512-523.
108. Papaemmanuil E, Cazzola M, Boultwood J, et al. Chronic Myeloid Disorders Working Group of the International Cancer Genome C. Somatic SF3B1 mutation in myelodyspla- sia with ring sideroblasts. N Engl J Med. 2011;365(15):1384-1395.
109. Bondu S, Alary AS, Lefevre C, et al. A vari- ant erythroferrone disrupts iron homeosta- sis in SF3B1-mutated myelodysplastic syn- drome. Sci Transl Med. 2019;11(500).
110. Taher AT, Weatherall DJ, Cappellini MD. Thalassaemia. Lancet. 2018;391(10116):155- 167.
111.Heeney MM, Guo D, De Falco L, et al. Normalizing hepcidin predicts TMPRSS6 mutation status in patients with chronic iron deficiency. Blood. 2018;132(4):448-452.
112. Traglia M, Girelli D, Biino G, et al. Association of HFE and TMPRSS6 genetic variants with iron and erythrocyte parame- ters is only in part dependent on serum hep- cidin concentrations. J Med Genet. 2011;48(9):629-634.
113. Galesloot TE, Vermeulen SH, Geurts- Moespot AJ, et al. Serum hepcidin: reference ranges and biochemical correlates in the general population. Blood. 2011;117(25): e218-225.
114.. Bregman DB, Morris D, Koch TA, He A, Goodnough LT. Hepcidin levels predict non- responsiveness to oral iron therapy in patients with iron deficiency anemia. Am J Hematol. 2013;88(2):97-101.
115.PrenticeAM,DohertyCP,AbramsSA,etal. Hepcidin is the major predictor of erythro- cyte iron incorporation in anemic African children. Blood. 2012;119(8):1922-1928.
116. Stoffel NU, Zeder C, Brittenham GM, Moretti D, Zimmermann MB. Iron absorp- tion from supplements is greater with alter- nate day than with consecutive day dosing in iron-deficient anemic women. Haematologica. 2019 Aug 14. [Epub ahead of print]
117.Hershko C, Camaschella C. How I treat unexplained refractory iron deficiency ane- mia. Blood. 2014;123(3):326-333.
118.Moretti D, Goede JS, Zeder C, et al. Oral
119.
iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood. 2015;126(17):1981-1929. Stoffel NU, Cercamondi CI, Brittenham G, et al. Iron absorption from oral iron supple- ments given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: two open-label, randomised con- trolled trials. Lancet Haematol. 2017;4(11): e524-e533.
120. Auerbach M, Deloughery T. Single-dose intravenous iron for iron deficiency: a new paradigm. Hematology Am Soc Hematol Educ Program. 2016 ;2016(1):57-66.
121.Casu C, Chessa R, Liu A, et al. Minihepcidins improve ineffective erythro- poiesis and splenomegaly in a new mouse model of adult beta-thalassemia major. Haematologica. 2019 Oct 3. [Epub ahead of print]
122. Casu C, Nemeth E, Rivella S. Hepcidin ago- nists as therapeutic tools. Blood. 2018;131 (16):1790-1794.
123.Li H, Rybicki AC, Suzuka SM, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med. 2010;16(2): 177-182.
124. Gelderman MP, Baek JH, Yalamanoglu A, P et al. Reversal of hemochromatosis by apo- transferrin in non-transfused and transfused Hbbth3/+ (heterozygous B1/B2 globin gene deletion) mice. Haematologica. 2015;100(5): 611-622.
125.Li H, Choesang T, Bao W, et al. Decreasing TfR1 expression reverses anemia and hep- cidin suppression in β-thalassemic mice. Blood. 2017;129(11):1514-1526.
126. Artuso I, Lidonnici MR, Altamura S, et al. Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: evi- dence from a murine model. Blood. 2018;132(21):2286-2297.
127. Wang X, Zhang M, Flores SRL, et al. Oral gavage of ginger nanoparticle-derived lipid vectors carrying Dmt1 siRNA blunts iron loading in murine hereditary hemochro- matosis. Mol Ther. 2019;27(3):493-506.
128. Dussiot M, Maciel TT, Fricot A, et al. An activin receptor IIA ligand trap corrects inef- fective erythropoiesis in β-thalassemia. Nat Med. 2014;20(4):398-407.
129. Piga A, Perrotta S, Gamberini MR, et al. Luspatercept improves hemoglobin levels and blood transfusion requirements in a study of patients with β-thalassemia. Blood. 2019;133(12):1279-1289.
130. Platzbecker U, Germing U, Gotze KS, et al. Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): a multicentre, open-label phase 2 dose-finding study with long-term extension study. Lancet Oncol. 2017;18(10):1338-1347.
131. Liu J, Liu W, Liu Y, et al. New thiazolidi- nones reduce iron overload in mouse mod- els of hereditary hemochromatosis and β- thalassemia. Haematologica. 2019;104(9): 1768-1781.
132.Vanclooster A, van Deursen C, Jaspers R, Cassiman D, Koek G. Proton pump inhibitors decrease phlebotomy need in HFE hemochromatosis: double-blind ran- domized placebo-controlled trial. Gastroenterology. 2017;153(3):678-680.e2.
133. Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and
Rev Drug Discov. 134.Chen N, Hao C, Peng X, et al. Roxadustat
delivery. Nat
2017;16(6):400-423.
haematologica | 2020; 105(2)
271


































































































   35   36   37   38   39