Page 36 - 2020_02-Haematologica-web
P. 36

C. Camaschella et al.
(PCBP) family exhibits iron chaperone activ- ity toward ferritin. J Biol Chem. 2013;288(24):17791-17802.
24. Ryu MS, Zhang D, Protchenko O, Shakoury-Elizeh M, Philpott CC. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J Clin Invest. 2017;127(5):1786-1797.
25. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105-109.
26. Dowdle WE, Nyfeler B, Nagel J, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014;16(11):1069-1079.
27. Nandal A, Ruiz JC, Subramanian P, , et al. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab. 2011;14(5):647-657.
28. Lakhal-Littleton S, Wolna M, Carr CA, et al. Cardiac ferroportin regulates cellular iron homeostasis and is important for cardiac function. Proc Natl Acad Sci U S A. 2015;112(10):3164-3169.
29. Zhang DL, Ghosh MC, Ollivierre H, Li Y, Rouault TA. Ferroportin deficiency in ery- throid cells causes serum iron deficiency and promotes hemolysis due to oxidative stress. Blood. 2018;132(19):2078-2087.
30. Zhang DL, Wu J, Shah BN, et al. Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk. Science. 2018;359(6383):1520-1523.
31. Keel SB, Doty RT, Yang Z, et al. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science. 2008;319(5864):825-828.
32. Chiabrando D, Marro S, Mercurio S, et al. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest. 2012;122(12):4569-4579.
33. Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front Pharmacol. 2014;5:124.
34. Costain G, Ghosh MC, Maio N, et al. Absence of iron-responsive element-binding protein 2 causes a novel neurodegenerative syndrome. Brain. 2019;142(5):1195-1202.
35. Galy B, Ferring-Appel D, Becker C, et al. Iron regulatory proteins control a mucosal block to intestinal iron absorption. Cell Rep. 2013;3(3):844-857.
36. Zhang DL, Hughes RM, Ollivierre-Wilson H, Ghosh MC, Rouault TA. A ferroportin transcript that lacks an iron-responsive ele- ment enables duodenal and erythroid pre- cursor cells to evade translational repression. Cell Metab. 2009;9(5):461-473.
37. Mancias JD, Pontano Vaites L, Nissim S, et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife. 2015;4.
38. Bellelli R, Castellone MD, Guida T, et al. NCOA4 transcriptional coactivator inhibits activation of DNA replication origins. Mol Cell. 2014;55(1):123-137.
39. Bellelli R, Federico G, Matte A, et al. NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. 2016;14(3):411-421.
40. Gao X, Lee HY, Li W, et al. Thyroid hor- mone receptor beta and NCOA4 regulate terminal erythrocyte differentiation. Proc Natl Acad Sci U S A. 2017;114(38):10107- 10112.
41. Aschemeyer S, Qiao B, Stefanova D, et al. Structure-function analysis of ferroportin
defines the binding site and an alternative mechanism of action of hepcidin. Blood. 2018;131(8):899-910.
42. Kautz L, Meynard D, Monnier A, et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood. 2008;112(4):1503-1509.
43. Lim PJ, Duarte TL, Arezes J, et al. Nrf2 con- trols iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab. 2019;1(5):519-531.
44. Koch PS, Olsavszky V, Ulbrich F, et al. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. Blood. 2017;129(4):415-419.
45. Canali S, Wang CY, Zumbrennen-Bullough KB, Bayer A, Babitt JL. Bone morphogenetic protein 2 controls iron homeostasis in mice independent of Bmp6. Am J Hematol. 2017;92(11):1204-1213.
46. Theurl I, Schroll A, Sonnweber T, et al. Pharmacologic inhibition of hepcidin expression reverses anemia of chronic inflammation in rats. Blood. 2011;118(18):4977-4984.
47. Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood. 2016;127(23):2809-2813.
48. Du X, She E, Gelbart T, et al. The serine pro- tease TMPRSS6 is required to sense iron deficiency. Science. 2008;320(5879):1088- 1092.
49. Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine pro- tease matriptase-2 (TMPRSS6) inhibits hep- cidin activation by cleaving membrane hemojuvelin. Cell Metab. 2008;8(6):502-511.
50. Finberg KE, Heeney MM, Campagna DR, et al. Mutations in TMPRSS6 cause iron-refrac- tory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5):569-571.
51. Colucci S, Pagani A, Pettinato M, et al. The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I recep- tor ALK2 in hepatocytes. Blood. 2017;130(19):2111-2120.
52. Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythro- ferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678-684.
53. Silvestri L, Pagani A, Camaschella C. Furin- mediated release of soluble hemojuvelin: a new link between hypoxia and iron home- ostasis. Blood. 2008;111(2):924-931.
54. Sonnweber T, Nachbaur D, Schroll A, et al. Hypoxia induced downregulation of hep- cidin is mediated by platelet derived growth factor BB. Gut. 2014;63(12):1951-1959.
55. Theurl I, Theurl M, Seifert M, et al. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood. 2008;111(4):2392-2399.
56. Malerba M, Louis S, Cuvellier S, et al. Epidermal hepcidin is required for neu- trophil response to bacterial infection. J Clin Invest. 2019 Dec 3. [Epub ahead of print]
57. Lakhal-Littleton S, Wolna M, Chung YJ, et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 2016;5.
58. Benyamin B, Esko T, Ried JS, et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. Nat Commun. 2014;5:4926.
59. Bekri S, Gual P, Anty R, et al. Increased adi- pose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology. 2006;131(3):788- 796.
60. Vecchi C, Montosi G, Garuti C, et al.
Gluconeogenic signals regulate iron home- ostasis via hepcidin in mice. Gastroenterology. 2014;146(4):1060-1069.
61. Folgueras AR, Freitas-Rodriguez S, Ramsay AJ, et al. Matriptase-2 deficiency protects from obesity by modulating iron homeosta- sis. Nat Commun. 2018;9(1):1350.
62. Mastrogiannaki M, Matak P, Peyssonnaux C. The gut in iron homeostasis: role of HIF- 2 under normal and pathological conditions. Blood. 2013;122(6):885-892.
63. Schwartz AJ, Das NK, Ramakrishnan SK, et al. Hepatic hepcidin/intestinal HIF-2alpha axis maintains iron absorption during iron deficiency and overload. J Clin Invest. 2019;129(1):336-348.
64. Ghosh MC, Zhang DL, Jeong SY, et al. Deletion of iron regulatory protein 1 causes polycythemia and pulmonary hypertension in mice through translational derepression of HIF-2alpha. Cell Metab. 2013;17(2):271- 281.
65. Anderson SA, Nizzi CP, Chang YI, et al. The IRP1-HIF-2alpha axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab. 2013;17(2):282-290.
66. Bullock GC, Delehanty LL, Talbot AL, et al. Iron control of erythroid development by a novel aconitase-associated regulatory path- way. Blood. 2010;116(1):97-108.
67. Richardson CL, Delehanty LL, Bullock GC, et al. Isocitrate ameliorates anemia by sup- pressing the erythroid iron restriction response. J Clin Invest. 2013;123(8):3614- 3623.
68. Nai A, Lidonnici MR, Rausa M, et al. The second transferrin receptor regulates red blood cell production in mice. Blood. 2015;125(7):1170-1179.
69. Camaschella C, Roetto A, Cali A, et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22. Nat Genet. 2000;25(1):14-15.
70. Rauner M, Baschant U, Roetto A, et al. Transferrin receptor 2 controls bone mass and pathological bone formation via BMP and Wnt signaling. Nat Metab. 2019;1(1): 111-124.
71. Finch CA. Erythropoiesis, erythropoietin, and iron. Blood. 1982;60(6):1241-1246.
72. Arezes J, Foy N, McHugh K, et al.
Erythroferrone inhibits the induction of hep- cidin by BMP6. Blood. 2018;132(14):1473- 1477.
73. Nai A, Rubio A, Campanella A, et al. Limiting hepatic Bmp-Smad signaling by matriptase-2 is required for erythropoietin- mediated hepcidin suppression in mice. Blood. 2016;127(19):2327-2336.
74. Kautz L, Jung G, Du X, et al. Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of beta-tha- lassemia. Blood. 2015;126(17):2031-2037.
75. Anker SD, Comin Colet J, Filippatos G, et al. Investigators F-HT. Ferric carboxymaltose in patients with heart failure and iron deficien- cy. N Engl J Med. 2009;361(25):2436-2448.
76. Feder JN, Gnirke A, Thomas W, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996;13(4):399-408.
77. Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE, Loreal O. Haemochromatosis. Nat Rev Dis Primers. 2018;4:18016.
78. Le Lan C, Loreal O, Cohen T, et al. Redox active plasma iron in C282Y/C282Y hemochromatosis. Blood. 2005;105(11): 4527-4531.
79. Sandhu K, Flintoff K, Chatfield MD, et al. Phenotypic analysis of hemochromatosis
270
haematologica | 2020; 105(2)


































































































   34   35   36   37   38