Page 66 - 2019_12-Haematologica-web
P. 66

L. Varricchio et al.
References
1. Iolascon A, Esposito MR, Russo R. Clinical aspects and pathogenesis of congenital dyserythropoietic anemias: from morpholo- gy to molecular approach. Haematologica. 2012;97(12):1786-1794.
2. Iolascon A, Heimpel H, Wahlin A, Tamary H. Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood. 2013;122(13):2162-2166.
3. Moreno-Carralero MI, Horta-Herrera S, Morado-Arias M, et al. Clinical and genetic features of congenital dyserythropoietic anemia (CDA). Eur J Haematol. 2018;101(3):368-378.
4. Arnaud L, Saison C, Helias V, et al. A domi- nant mutation in the gene encoding the ery- throid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet. 2010;87(5):721-727.
5. Jaffray JA, Mitchell WB, Gnanapragasam MN, et al. Erythroid transcription factor EKLF/KLF1 mutation causing congenital dyserythropoietic anemia type IV in a patient of Taiwanese origin: Review of all reported cases and development of a clinical diagnostic paradigm. Blood Cells Mol Dis. 2013;51(2):71-75.
6. Agre P, Smith BL, Baumgarten R, et al. Human red cell Aquaporin CHIP. II. Expression during normal fetal development and in a novel form of congenital dysery- thropoietic anemia. J Clin Invest. 1994;94(3):1050-1058.
7. Parsons SF, Jones J, Anstee DJ, et al. A novel form of congenital dyserythropoietic ane- mia associated with deficiency of erythroid CD44 and a unique blood group phenotype [In(a-b-), Co(a-b-)]. Blood. 1994;83(3):860- 868.
8. Tang W, Cai SP, Eng B, et al. Expression of embryonic zeta-globin and epsilon-globin chains in a 10-year-old girl with congenital anemia. Blood. 1993;81(6):1636-1640.
9. Wickramasinghe SN, Illum N, Wimberley PD. Congenital dyserythropoietic anaemia with novel intra-erythroblastic and intra- erythrocytic inclusions. Br J Haematol. 1991;79(2):322-330.
10. Singleton BK, Lau W, Fairweather VS, et al. Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes. Blood. 2011;118(11):3137-3145.
11. de-la-Iglesia-Inigo S, Moreno-Carralero MI, Lemes-Castellano A, Molero-Labarta T, Mendez M, Moran-Jimenez MJ. A case of congenital dyserythropoietic anemia type IV. Clin Case Rep. 2017;5(3):248-252.
12. Ortolano R, Forouhar M, Warwick A, Harper D. A Case of Congenital Dyserythropoeitic Anemia Type IV Caused by E325K Mutation in Erythroid Transcription Factor KLF1. J Pediatr Hematol Oncol. 2018;40(6):e389-e391.
13. Ravindranath Y, Johnson RM, Goyette G, Buck S, Gadgeel M, Gallagher PG. KLF1 E325K-associated Congenital Dyserythropoietic Anemia Type IV: Insights Into the Variable Clinical Severity. J Pediatr Hematol Oncol. 2018;40(6):e405-e409.
14. Miller IJ, Bieker JJ. A novel, erythroid cell- specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol. 1993;13:2776-2786.
15. Siatecka M, Bieker JJ. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood. 2011;118(8):2044-2054.
16. Tallack MR, Perkins AC. KLF1 directly coor- dinates almost all aspects of terminal ery- throid differentiation. IUBMB Life. 2010;62(12):886-890.
17. Yien YY, Bieker JJ. EKLF/KLF1, a tissue- restricted integrator of transcriptional con- trol, chromatin remodeling, and lineage determination. Mol Cell Biol. 2013;33(1):4- 13.
18. Gnanapragasam MN, Bieker JJ. Orchestration of late events in erythro- poiesis by KLF1/EKLF. Curr Opin Hematol. 2017;24(3):183-190.
19. Perkins A, Xu X, Higgs DR, et al. Kruppeling erythropoiesis: an unexpected broad spec- trum of human red blood cell disorders due to KLF1 variants. Blood. 2016;127(15):1856- 1862.
20. Waye JS, Eng B. Kruppel-like factor 1: hema- tologic phenotypes associated with KLF1 gene mutations. Int J Lab Hematol. 2015;37 Suppl 1:78-84.
21. Borg J, Patrinos GP, Felice AE, Philipsen S. Erythroid phenotypes associated with KLF1 mutations. Haematologica. 2011;96(5):635- 638.
22. Tallack MR, Perkins AC. Three fingers on the switch: Kruppel-like factor 1 regulation of gamma-globin to beta-globin gene switching. Curr Opin Hematol. 2013; 20(3):193-200.
23. Singleton BK, Frayne J, Anstee DJ. Blood group phenotypes resulting from mutations in erythroid transcription factors. Curr Opin Hematol. 2012;19(6):486-493.
24. Helias V, Saison C, Peyrard T, et al. Molecular analysis of the rare in(Lu) blood type: toward decoding the phenotypic out- come of haploinsufficiency for the transcrip- tion factor KLF1. Hum Mutat. 2013; 34(1):221-228.
25. Singleton BK, Burton NM, Green C, Brady RL, Anstee DJ. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood. 2008; 112(5):2081-2088.
33. Planutis A, Xue L, Trainor CD, et al. Neomorphic effects of the neonatal anemia (Nan-Eklf) mutation contribute to deficits throughout development. Development. 2017;144(3):430-440.
34. Gnanapragasam MN, McGrath KE, Catherman S, Xue L, Palis J, Bieker JJ. EKLF/KLF1-regulated cell cycle exit is essen- tial for erythroblast enucleation. Blood. 2016;128(12):1631-1641.
35. Daheron L, D'Souza S. Blood - SeV derived fibroblast generated iPSCs. In: StemBook. 2013/05/10 ed. Cambridge, MA: Harvard Stem Cell Institute; 2008.
36. Migliaccio G, Di Pietro R, di Giacomo V, et al. In vitro mass production of human ery- throid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol Dis. 2002;28(2):169-180.
37. Migliaccio G, Sanchez M, Masiello F, et al. Humanized culture medium for clinical expansion of human erythroblasts. Cell Transplant. 2010;19(4):453-469.
38. Chen J, Peterson KR, Iancu-Rubin C, Bieker JJ. Design of embedded chimeric peptide nucleic acids that efficiently enter and accu- rately reactivate gene expression in vivo. Proc Natl Acad Sci U S A. 2010; 107(39):16846-16851.
39. Li J, Hale J, Bhagia P, et al. Isolation and tran- scriptome analyses of human erythroid pro- genitors: BFU-E and CFU-E. Blood. 2014;124(24):3636-3645.
40. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.
41. Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid tran- scription factor KLF1 causes hereditary per- sistence of fetal hemoglobin. Nat Genet. 2010;42(9):801-805.
42. Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet. 2010;42(9):742-744.
43. Norton LJ, Funnell APW, Burdach J, et al. KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells. Blood Adv. 2017;1(11):685-
26. Liu D, Zhang X, Yu L, et al. KLF1 mutations
are relatively more common in a tha-
lassemia endemic region and ameliorate the
severity of beta-thalassemia. Blood. 2014; 124(5):803-811. 692.
27. Viprakasit V, Ekwattanakit S, Riolueang S, et al. Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood. 2014;123(10):1586-1595.
28. Huang J, Zhang X, Liu D, et al. Compound heterozygosity for KLF1 mutations is associ- ated with microcytic hypochromic anemia and increased fetal hemoglobin. Eur J Hum Genet. 2015;23(10):1341-1348.
29. Magor GW, Tallack MR, Gillinder KR, et al. KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood. 2015;125(15):2405-2417.
30. Heruth DP, Hawkins T, Logsdon DP, et al. Mutation in erythroid specific transcription factor KLF1 causes Hereditary Spherocytosis in the Nan hemolytic anemia mouse model. Genomics. 2010;96(5):303-307.
31. Siatecka M, Sahr KE, Andersen SG, Mezei M, Bieker JJ, Peters LL. Severe anemia in the Nan mutant mouse caused by sequence- selective disruption of erythroid Kruppel- like factor. Proc Natl Acad Sci U S A. 2010;107(34):15151-15156.
32. Gillinder KR, Ilsley MD, Nebor D, et al. Promiscuous DNA-binding of a mutant zinc finger protein corrupts the transcriptome and diminishes cell viability. Nucleic Acids Res. 2017;45(3):1130-1143.
44. Siatecka M, Lohmann F, Bao S, Bieker JJ. EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol. 2010; 30(11):2811-2822.
45. Russo R, Andolfo I, Manna F, et al. Increased levels of ERFE-encoding FAM132B in patients with congenital dyserythropoietic anemia type II. Blood. 2016;128(14):1899- 1902.
46. Pimentel H, Parra M, Gee S, et al. A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis. Nucleic Acids Res. 2014;42(6):4031-4042.
47. An X, Schulz VP, Li J, et al. Global transcrip- tome analyses of human and murine termi- nal erythroid differentiation. Blood. 2014;123(22):3466-3477.
48. Feng WC, Southwood CM, Bieker JJ. Analyses of ß-thalassemia mutant DNA interactions with erythroid Krüppel-like fac- tor (EKLF), an erythroid cell-specific tran- scription factor. J Biol Chem. 1994;269:1493- 1500.
49. Klevit RE. Recognition of DNA by Cys2, His2 zinc fingers. Science. 1991;253:1367- 1395.
50. Letuve S, Lajoie-Kadoch S, Audusseau S, et al. IL-17E upregulates the expression of
2380
haematologica | 2019; 104(12)


































































































   64   65   66   67   68