Page 33 - 2019_12-Haematologica-web
P. 33

Clinical relevance of MYD88 mutations in B-NHL
66. Gurth M, Bernard V, Bernd HW, Schemme J, Thorns C. Nodal marginal zone lymphoma: mutation status analyses of CD79A, CD79B, and MYD88 reveal no specific recurrent lesions. Leuk Lymphoma. 2017;58(4):979-981.
67. Hung SS, Meissner B, Chavez EA, et al. Assessment of capture and amplicon-based aspproaches for the development of a target- ed next-generation sequencing pipeline to personalize lymphoma management. J Mol Diagn. 2018;20(2):203-214.
68. Okosun J, Bodor C, Wang J, et al. Integrated genomic analysis identifies recurrent muta- tions and evolution patterns driving the ini- tiation and progression of follicular lym- phoma. Nat Genet. 2014;46(2):176-181.
69. Ozawa MG, Bhaduri A, Chisholm KM, et al. A study of the mutational landscape of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma. Mod Pathol. 2016;29(10):1212-1220.
70. Louissaint A, Jr., Schafernak KT, Geyer JT, et al. Pediatric-type nodal follicular lymphoma: a biologically distinct lymphoma with fre- quent MAPK pathway mutations. Blood. 2016;128(8):1093-1100.
71. Menguy S, Beylot-Barry M, Parrens M, et al. Primary cutaneous large B-cell lymphomas: relevance of the 2017 World Health Organization classification: clinicopatholog- ical and molecular analyses of 64 cases. Histopathology. 2019;74(7):1067-1080.
72. Menguy S, Gros A, Pham-Ledard A, et al. MYD88 somatic mutation is a diagnostic cri- terion in primary cutaneous large B-cell lym- phoma. J Invest Dermatol. 2016;136(8): 1741-1744.
73. Pham-Ledard A, Cappellen D, Martinez F, Vergier B, Beylot-Barry M, Merlio JP. MYD88 somatic mutation is a genetic fea- ture of primary cutaneous diffuse large B-cell lymphoma, leg type. J Invest Dermatol. 2012;132(8):2118-2120.
74. Shin SY, Lee ST, Kim HY, et al. Detection of MYD88 L265P in patients with lymphoplas- macytic lymphoma/Waldenstrom macro- globulinemia and other B-cell non-Hodgkin lymphomas. Blood Res. 2016;51(3):181-186.
75. Aggarwal V, Das A, Bal A, et al. MYD88, CARD11, and CD79B oncogenic mutations are rare events in the indian cohort of de novo nodal diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol. 2019;27(4):311-318.
76. Cao Y, Zhu T, Zhang P, et al. Mutations or copy number losses of CD58 and TP53 genes in diffuse large B cell lymphoma are independent unfavorable prognostic factors. Oncotarget. 2016;7(50):83294-83307.
77. Chapuy B, Stewart C, Dunford AJ, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct path- ogenic mechanisms and outcomes. Nat Med. 2018;24(5):679-690.
78. Fogliatto L, Grokoski KC, Strey YM, et al. Prognostic impact of MYD88 mutation, pro- liferative index and cell origin in diffuse large B cell lymphoma. Hematol Transfus Cell Ther. 2019;41(1):50-56.
79. Intlekofer AM, Joffe E, Batlevi CL, et al. Integrated DNA/RNA targeted genomic profiling of diffuse large B-cell lymphoma using a clinical assay. Blood Cancer J. 2018;8(6):60.
80. Reddy A, Zhang J, Davis NS, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481-494.
81. Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B- cell lymphoma. N Engl J Med. 2018;378
(15):1396-1407.
82. Tadic L, Marjanovic G, Macukanovic-
Golubovic L, et al. The importance of Myd88 L265P mutation, clinical and immunohistochemical prognostic factors for the survival of patients with diffuse large B- cell non-Hodgkin lymphoma treated by immunochemotherapy in southeast Serbia. J BUON. 2016;21(5):1259-1267.
83. Vermaat JS, Somers SF, de Wreede LC, et al. MYD88 mutations identify a molecular sub- group of diffuse large B-cell lymphoma with an unfavourable prognosis. Haematologica. 2019 May 23. [Epub ahead of print]
84. Xu PP, Zhong HJ, Huang YH, et al. B-cell function gene mutations in diffuse large B- cell lymphoma: a retrospective cohort study. EBioMedicine. 2017;16:106-114.
85. Ren W, Ye X, Su H, et al. Genetic landscape of hepatitis B virus-associated diffuse large B-cell lymphoma. Blood. 2018;131(24):2670- 2681.
86. Nayyar N, White MD, Gill CM, et al. MYD88 L265P mutation and CDKN2A loss are early mutational events in primary cen- tral nervous system diffuse large B-cell lym- phomas. Blood Adv. 2019;3(3):375-383.
87. Sethi TK, Kovach AE, Grover NS, et al. Clinicopathologic correlates of MYD88 L265P mutation and programmed cell death (PD-1) pathway in primary central nervous system lymphoma. Leuk Lymphoma. 2019:1-10.
88. Zheng M, Perry AM, Bierman P, et al. Frequency of MYD88 and CD79B muta- tions, and MGMT methylation in primary central nervous system diffuse large B-cell lymphoma. Neuropathology. 2017;37(6): 509-516.
89. Ducharme O, Beylot-Barry M, Pham-Ledard A, et al. Mutations of the B-cell receptor pathway confer chemoresistance in primary cutaneous diffuse large B-cell lymphoma leg-type. J Invest Dermatol. 2019 May 28 [Epub ahead of print]
90. Mareschal S, Pham-Ledard A, Viailly PJ, et al. Identification of somatic mutations in pri- mary cutaneous diffuse large B-cell lym- phoma, leg type by massive parallel sequencing. J Invest Dermatol. 2017;137 (9):1984-1994.
91. Pham-Ledard A, Prochazkova-Carlotti M, Andrique L, et al. Multiple genetic alter- ations in primary cutaneous large B-cell lym- phoma, leg type support a common lym- phomagenesis with activated B-cell-like dif- fuse large B-cell lymphoma. Mod Pathol. 2014;27(3):402-411.
92. Kataoka K, Miyoshi H, Sakata S, et al. Frequent structural variations involving pro- grammed death ligands in Epstein-Barr virus-associated lymphomas. Leukemia. 2019;33(7):1687-1699.
93. Ohata Y, Tatsuzawa A, Ohyama Y, et al. A distinctive subgroup of oral EBV+ B-cell neo- plasm with polymorphous features is poten- tially identical to EBV+ mucocutaneous ulcer. Hum Pathol. 2017;69:129-139.
94. Gebauer N, Hardel TT, Gebauer J, et al. Activating mutations affecting the NF-kappa B pathway and EZH2-mediated epigenetic regulation are rare events in primary medi- astinal large B-cell lymphoma. Anticancer Res. 2014;34(10):5503-5507.
95. Schrader AMR, Jansen PM, Willemze R, et al. High prevalence of MYD88 and CD79B mutations in intravascular large B-cell lym- phoma. Blood. 2018;131(18):2086-2089.
96. Kraan W, Horlings HM, van Keimpema M, et al. High prevalence of oncogenic MYD88 and CD79B mutations in diffuse large B-cell
lymphomas presenting at immune-privi-
leged sites. Blood Cancer J. 2013;3:e139.
97. Carreno E, Clench T, Steeples LR, et al. Clinical spectrum of vitreoretinal lymphoma and its association with MyD88 L265P mutation. Acta Ophthalmol. 2019;97(1):
e138-e139.
98. Yonese I, Takase H, Yoshimori M, et al.
CD79B mutations in primary vitreoretinal lymphoma: diagnostic and prognostic poten- tial. Eur J Haematol. 2019;102(2):191-196.
99. Franco F, Gonzalez-Rincon J, Lavernia J, et al. Mutational profile of primary breast dif- fuse large B-cell lymphoma. Oncotarget. 2017;8(61):102888-102897.
100. de Groen RAL, Ibramoglu MS, van Eijk R, et al. Molecular profiling of primary bone lym- phomas reveals frequent mutations in EZH2 and other epigenetic genes: Implications for targeted treatment. Hemasphere. 2019;3: 212.
101. Hallas C, Preukschas M, Tiemann M. Immunohistochemical distinction of ABC and GCB in extranodal DLBCL is not reflect- ed in mutation patterns. Leuk Res. 2019;76:107-111.
102. Xu Y, Li J, Ouyang J, et al. Prognostic rele- vance of protein expression, clinical factors, and MYD88 mutation in primary bone lym- phoma. Oncotarget. 2017;8(39):65609- 65619.
103.Brenner I, Roth S, Flossbach L, Wobser M, Rosenwald A, Geissinger E. Lack of myeloid differentiation primary response protein MyD88 L265P mutation in primary cuta- neous marginal zone lymphoma. Br J Dermatol. 2015;173(6):1527-1528.
104. Wobser M, Maurus K, Roth S, et al. Myeloid differentiation primary response 88 muta- tions in a distinct type of cutaneous margin- al-zone lymphoma with a nonclass- switched immunoglobulin M immunophe- notype. Br J Dermatol. 2017;177(2):564-566.
105.Zhu D, Ikpatt OF, Dubovy SR, et al. Molecular and genomic aberrations in Chlamydophila psittaci negative ocular adnexal marginal zone lymphomas. Am J Hematol. 2013;88(9):730-735.
106. Je EM, Yoo NJ, Lee SH. Absence of MYD88 gene mutation in acute leukemias and mul- tiple myelomas. Eur J Haematol. 2012;88(3):273-274.
107.Mori N, Ohwashi M, Yoshinaga K, et al. L265P mutation of the MYD88 gene is fre- quent in Waldenstrom's macroglobulinemia and its absence in myeloma. PLoS One. 2013;8(11):e80088.
108.Kraan W, van Keimpema M, Horlings HM, et al. High prevalence of oncogenic MYD88 and CD79B mutations in primary testicular diffuse large B-cell lymphoma. Leukemia. 2014;28(3):719-720
109. Sujobert P, Le Bris Y, Leval L, et al. The need for a consensus next-generation sequencing panel for mature lymphoid malignancies. Hemasphere. 2018;3(1).
110. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390.
111. Pham-Ledard A, Beylot-Barry M, Barbe C, et al. High frequency and clinical prognostic value of MYD88 L265P mutation in primary cutaneous diffuse large B-cell lymphoma, leg-type. JAMA Dermatol. 2014;150(11): 1173-1179.
112. Takano S, Hattori K, Ishikawa E, et al. MyD88 mutation in elderly predicts poor prognosis in primary central nervous system lymphoma: multi-institutional analysis. World Neurosurg. 2018;112:e69-e73.
haematologica | 2019; 104(12)
2347


































































































   31   32   33   34   35