Page 32 - 2019_12-Haematologica-web
P. 32

R.A.L. de Groen et al.
survival determinant transactivated by mutated MYD88, and a direct target of ibru- tinib. Blood. 2016;127(25):3237-3252.
22. Lee JH, Jeong H, Choi JW, Oh H, Kim YS. Clinicopathologic significance of MYD88 L265P mutation in diffuse large B-cell lym- phoma: a meta-analysis. Sci Rep. 2017;7 (1):1785.
23. Onaindia A, Medeiros LJ, Patel KP. Clinical utility of recently identified diagnostic, prog- nostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol. 2017;30(10):1338-1366.
24. Baer C, Dicker F, Kern W, Haferlach T, Haferlach C. Genetic characterization of MYD88-mutated lymphoplasmacytic lym- phoma in comparison with MYD88-mutat- ed chronic lymphocytic leukemia. Leukemia. 2017;31(6):1355-1362.
25. Ballester LY, Loghavi S, Kanagal-Shamanna R, et al. Clinical validation of a CXCR4 mutation screening assay for Waldenstrom macroglobulinemia. Clin Lymphoma Myeloma Leuk. 2016;16(7):395-403.
26. Cilla N, Vercruyssen M, Ameye L, et al. [Diagnostic approach of an IgM monoclonal gammopathy and clinical importance of gene MYD88 L265P mutation]. Rev Med Brux. 2018 May 30. [Epub ahead of print]
27. Fang H, Kapoor P, Gonsalves WI, et al. Defining lymphoplasmacytic lymphoma: does MYD88L265P define a pathologically distinct entity among patients with an IgM paraprotein and bone marrow-based low- grade B-cell lymphomas with plasmacytic differentiation? Am J Clin Pathol. 2018;150(2):168-176.
28. Insuasti-Beltran G, Gale JM, Wilson CS, Foucar K, Czuchlewski DR. Significance of MYD88 L265P mutation status in the sub- classification of low-grade B-cell lym- phoma/leukemia. Arch Pathol Lab Med. 2015;139(8):1035-1041.
29. Martinez-Lopez A, Curiel-Olmo S, Mollejo M, et al. MYD88 (L265P) somatic mutation in marginal zone B-cell lymphoma. Am J Surg Pathol. 2015;39(5):644-651.
30. Ondrejka SL, Lin JJ, Warden DW, Durkin L, Cook JR, Hsi ED. MYD88 L265P somatic mutation: its usefulness in the differential diagnosis of bone marrow involvement by B-cell lymphoproliferative disorders. Am J Clin Pathol. 2013;140(3):387-394.
31. Drandi D, Genuardi E, Dogliotti I, et al. Highly sensitive MYD88(L265P) mutation detection by droplet digital polymerase chain reaction in Waldenstrom macroglobu- linemia. Haematologica. 2018;103(6):1029- 1037.
32. Poulain S, Roumier C, Decambron A, et al. MYD88 L265P mutation in Waldenstrom macroglobulinemia. Blood. 2013;121(22): 4504-4511.
33. Varettoni M, Boveri E, Zibellini S, et al. Clinical and molecular characteristics of lymphoplasmacytic lymphoma not associat- ed with an IgM monoclonal protein: a mul- ticentric study of the rete ematologica lom- barda (REL) network. Am J Hematol. 2019 Aug 4. [Epub ahead of print]
34. Xu L, Hunter ZR, Tsakmaklis N, et al. Clonal architecture of CXCR4 WHIM-like muta- tions in Waldenstrom macroglobulinaemia. Br J Haematol. 2016;172(5):735-744.
35. Xu L, Hunter ZR, Yang G, et al. Detection of MYD88 L265P in peripheral blood of patients with Waldenstrom's macroglobu- linemia and IgM monoclonal gammopathy of undetermined significance. Leukemia. 2014;28(8):1698-1704.
36. Treon SP, Cao Y, Xu L, Yang G, Liu X,
Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123(18):2791-2796.
37. Abeykoon JP, Paludo J, King RL, et al. MYD88 mutation status does not impact overall sur- vival in Waldenstrom macroglobulinemia. Am J Hematol. 2018;93(2):187-194.
38. Ali YB, Foad RM, Abdel-Wahed E. Lack of associations between TLR9 and MYD88 gene polymorphisms and risk of chronic lymphocytic leukemia. Asian Pac J Cancer Prev. 2017;18(12):3245-3250.
39. Improgo MR, Tesar B, Klitgaard JL, et al. MYD88 L265P mutations identify a prog- nostic gene expression signature and a path- way for targeted inhibition in CLL. Br J Haematol. 2019;184(6):925-936.
40. JiangM,LiJ,ZhouJ,XingC,XuJJ,GuoF. High-resolution melting analysis for rapid and sensitive MYD88 screening in chronic lymphocytic leukemia. Oncol Lett. 2019;18(1):814-821.
41. Leeksma AC, Taylor J, Wu B, et al. Clonal diversity predicts adverse outcome in chron- ic lymphocytic leukemia. Leukemia. 2019;33(2):390-402.
42. Maleki Y, Alahbakhshi Z, Heidari Z, et al. NOTCH1, SF3B1, MDM2 and MYD88 mutations in patients with chronic lympho- cytic leukemia. Oncol Lett. 2019;17(4):4016- 4023.
43. Patkar N, Subramanian PG, Deshpande P, et al. MYD88 mutant lymphoplasmacytic lym- phoma/Waldenstrom macroglobulinemia has distinct clinical and pathological features as compared to its mutation negative coun- terpart. Leuk Lymphoma. 2015;56(2):420- 425.
44. Putowski M, Podgorniak M, Pirog M, et al. Prognostic impact of NOTCH1, MYD88, and SF3B1 mutations in Polish patients with chronic lymphocytic leukemia. Pol Arch Intern Med. 2017;127(4):238-244.
45. Qin SC, Xia Y, Miao Y, et al. MYD88 muta- tions predict unfavorable prognosis in chronic lymphocytic leukemia patients with mutated IGHV gene. Blood Cancer J. 2017;7(12):651.
46. Quijada-Alamo M, Hernandez-Sanchez M, Robledo C, et al. Next-generation sequenc- ing and FISH studies reveal the appearance of gene mutations and chromosomal abnor- malities in hematopoietic progenitors in chronic lymphocytic leukemia. J Hematol Oncol. 2017;10(1):83.
47. Rigolin GM, Saccenti E, Bassi C, et al. Extensive next-generation sequencing analy- sis in chronic lymphocytic leukemia at diag- nosis: clinical and biological correlations. J Hematol Oncol. 2016;9(1):88.
48. Rizzo D, Chauzeix J, Trimoreau F, et al. IgM peak independently predicts treatment-free survival in chronic lymphocytic leukemia and correlates with accumulation of adverse oncogenetic events. Leukemia. 2015;29(2): 337-345.
49. Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identi- fies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8): 1403-1412.
50. Sutton LA, Young E, Baliakas P, et al. Different spectra of recurrent gene muta- tions in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors. Haematologica. 2016;101(8):959- 967.
51. Vollbrecht C, Mairinger FD, Koitzsch U, et al. Comprehensive analysis of disease-related
genes in chronic lymphocytic leukemia by multiplex PCR-based next generation sequencing. PLoS One. 2015;10(6):e0129544.
52. Wu SJ, Lin CT, Agathangelidis A, et al. Distinct molecular genetics of chronic lym- phocytic leukemia in Taiwan: clinical and pathogenetic implications. Haematologica. 2017;102(6):1085-1090.
53. Puente XS, Bea S, Valdes-Mas R, et al. Non- coding recurrent mutations in chronic lym- phocytic leukaemia. Nature. 2015;526 (7574):519-524.
54. Agathangelidis A, Ljungstrom V, Scarfo L, et al. Highly similar genomic landscapes in monoclonal B-cell lymphocytosis and ultra- stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica. 2018;103(5):865-873.
55. Clipson A, Wang M, de Leval L, et al. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct geno- type. Leukemia. 2015;29(5):1177-1185.
56. Traverse-Glehen A, Bachy E, Baseggio L, et al. Immunoarchitectural patterns in splenic marginal zone lymphoma: correlations with chromosomal aberrations, IGHV mutations, and survival. A study of 76 cases. Histopathology. 2013;62(6):876-893.
57. Jallades L, Baseggio L, Sujobert P, et al. Exome sequencing identifies recurrent BCOR alterations and the absence of KLF2, TNFAIP3 and MYD88 mutations in splenic diffuse red pulp small B-cell lymphoma. Haematologica. 2017;102(10):1758-1766.
58. Maitre E, Bertrand P, Maingonnat C, et al. New generation sequencing of targeted genes in the classical and the variant form of hairy cell leukemia highlights mutations in epigenetic regulation genes. Oncotarget. 2018;9(48):28866-28876.
59. Staiger AM, Ott MM, Parmentier S, et al. Allele-specific PCR is a powerful tool for the detection of the MYD88 L265P mutation in diffuse large B cell lymphoma and decalci- fied bone marrow samples. Br J Haematol. 2015;171(1):145-148.
60. Hamadeh F, MacNamara SP, Aguilera NS, Swerdlow SH, Cook JR. MYD88 L265P mutation analysis helps define nodal lym- phoplasmacytic lymphoma. Mod Pathol. 2015;28(4):564-574.
61. King RL, Gonsalves WI, Ansell SM, et al. Lymphoplasmacytic lymphoma With a non- IgM paraprotein shows clinical and patho- logic heterogeneity and may harbor MYD88 L265P mutations. Am J Clin Pathol. 2016;145(6):843-851.
62. Varettoni M, Zibellini S, Boveri E, et al. A risk-stratification model based on the initial concentration of the serum monoclonal pro- tein and MYD88 mutation status identifies a subset of patients with IgM monoclonal gammopathy of undetermined significance at high risk of progression to Waldenstrom macroglobulinaemia or other lymphoprolif- erative disorders. Br J Haematol. 2019 Jul 5. [Epub ahead of print]
63. Angelova EA, Li S, Wang W, et al. IgM plas- ma cell myeloma in the era of novel therapy: a clinicopathological study of 17 cases. Hum Pathol. 2019;84:321-334.
64. Li ZM, Rinaldi A, Cavalli A, et al. MYD88 somatic mutations in MALT lymphomas. Br J Haematol. 2012;158(5):662-664.
65. Moody S, Escudero-Ibarz L, Wang M, et al. Significant association between TNFAIP3 inactivation and biased immunoglobulin heavy chain variable region 4-34 usage in mucosa-associated lymphoid tissue lym- phoma. J Pathol. 2017;243(1):3-8.
2346
haematologica | 2019; 104(12)


































































































   30   31   32   33   34