Page 114 - 2019_12-Haematologica-web
P. 114

M. Wu et al. References
1. Moreno I, Martin G, Bolufer P, et al. Incidence and prognostic value of FLT3 internal tandem duplication and D835 muta- tions in acute myeloid leukemia. Haematologica. 2003;88(1):19-24.
2. Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia. 2003;17(9):1738-1752.
3. Broxmeyer HE, Lu L, Cooper S, Ruggieri L, Li ZH, Lyman SD. Flt3 ligand stimulates/cos- timulates the growth of myeloid stem/prog- enitor cells. Exp Hematol. 1995;23(10):1121- 1129.
4. Lyman SD, James L, Vanden Bos T, et al. Molecular cloning of a ligand for the flt3/flk- 2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell. 1993;75(6):1157-1167.
5. Small D, Levenstein M, Kim E, et al. STK-1, the human homolog of Flk-2/Flt-3, is selec- tively expressed in CD34+ human bone marrow cells and is involved in the prolifer- ation of early progenitor/stem cells. Proc Natl Acad Sci U S A. 1994;91(2):459-463.
6. Choudhary C, Muller-Tidow C, Berdel WE, Serve H. Signal transduction of oncogenic Flt3. Int J Hematol. 2005;82(2):93-99.
7. Wu M, Hamaker M, Li L, Small D, Duffield AS. DOCK2 interacts with FLT3 and modu- lates the survival of FLT3-expressing leukemia cells. Leukemia. 2017;31(3):688- 696.
8. KwofieMA,SkowronskiJ.Specificrecogni- tion of Rac2 and Cdc42 by DOCK2 and DOCK9 guanine nucleotide exchange fac- tors. J Biol Chem. 2008;283(6):3088-3096.
9. Nishihara H, Maeda M, Oda A, et al. DOCK2 associates with CrkL and regulates Rac1 in human leukemia cell lines. Blood. 2002;100(12):3968-3974.
10. Kikuchi T, Kubonishi S, Shibakura M, et al. Dock2 participates in bone marrow lym- pho-hematopoiesis. Biochem Biophys Res Commun. 2008;367(1):90-96.
11. Sato Y, Oda H, Patrick MS, et al. Rac GTPases are involved in development, sur- vival and homeostasis of T cells. Immunol Lett. 2009;124(1):27-34.
12. KalfaTA,PushkaranS,ZhangX,etal.Rac1 and Rac2 GTPases are necessary for early erythropoietic expansion in the bone mar- row but not in the spleen. Haematologica. 2010;95(1):27-35.
13. Sylow L, Nielsen IL, Kleinert M, et al. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol. 2016;594(17):4997-5008.
14. Rassool FV, Gaymes TJ, Omidvar N, et al. Reactive oxygen species, DNA damage, and error-prone repair: a model for genomic insta- bility with progression in myeloid leukemia? Cancer Res. 2007;67(18) 8762-8771.
15. Fritz G, Henninger C. Rho GTPases: novel players in the regulation of the DNA dam- age response? Biomolecules. 2015;5(4): 2417-2434.
16. Cancelas JA, Jansen M, Williams DA. The role of chemokine activation of Rac GTPases in hematopoietic stem cell marrow homing, retention, and peripheral mobiliza- tion. Exp Hematol. 2006;34(8):976-985.
17. ReifK,CysterJ.TheCDMproteinDOCK2 in lymphocyte migration. Trends Cell Biol.
2002;12(8):368-373.
18. Ackerknecht M, Gollmer K, Germann P, et
al. Antigen availability and DOCK2-driven motility govern CD4(+) T cell interactions with dendritic cells in vivo. J Immunol. 2017;199(2):520-530.
19. Gollmer K, Asperti-Boursin F, Tanaka Y, et al. CCL21 mediates CD4+ T-cell costimula- tion via a DOCK2/Rac-dependent pathway. Blood. 2009;114(3):580-588.
20. Dimitrova D, Freeman AF. Current status of dedicator of cytokinesis-associated immun- odeficiency: DOCK8 and DOCK2. Dermatol Clin. 2017;35(1):11-19.
21. Guo X, Chen SY. Dedicator of cytokinesis 2 in cell signaling regulation and disease deve- lopment. J Cell Physiol. 2017;232(8): 1931- 1940.
22. Jiang H, Pan F, Erickson LM, et al. Deletion of DOCK2, a regulator of the actin cytoskeleton in lymphocytes, suppresses cardiac allograft rejection. J Exp Med. 2005;202(8):1121-1130.
23. Watanabe M, Terasawa M, Miyano K, et al. DOCK2 and DOCK5 act additively in neu- trophils to regulate chemotaxis, superoxide production, and extracellular trap formation. J Immunol. 2014;193(11):5660-5667.
24. ChenY,MengF,WangB,HeL,LiuY,LiuZ. Dock2 in the development of inflammation and cancer. Eur J Immunol. 2018;48(6):915- 922.
25. Kunisaki Y, Tanaka Y, Sanui T, et al. DOCK2 is required in T cell precursors for develop- ment of Valpha14 NK T cells. J Immunol. 2006;176(8):4640-4645.
26. Nishihara H, Maeda M, Tsuda M, et al. DOCK2 mediates T cell receptor-induced activation of Rac2 and IL-2 transcription. Biochem Biophys Res Commun. 2002;296(3):716-720.
27. Wang L, Nishihara H, Kimura T, et al. DOCK2 regulates cell proliferation through Rac and ERK activation in B cell lymphoma. Biochem Biophys Res Commun. 2010;395(1):111-115.
28. Ushijima M, Uruno T, Nishikimi A, et al. The Rac activator DOCK2 mediates plasma cell differentiation and IgG antibody pro- duction. Front Immunol. 2018;9:243.
29. Dobbs K, Dominguez Conde C, Zhang SY, et al. Inherited DOCK2 deficiency in patients with early-onset invasive infec- tions. N Engl J Med. 2015;372(25):2409- 2422.
30. Alizadeh Z, Mazinani M, Shakerian L, Nabavi M, Fazlollahi MR. DOCK2 deficien- cy in a patient with hyper IgM phenotype. J Clin Immunol. 2018;38(1):10-12.
31. Jardim MJ, Wang Q, Furumai R, Wakeman T, Goodman BK, Wang XF. Reduced ATR or Chk1 expression leads to chromosome instability and chemosensitization of mis- match repair-deficient colorectal cancer cells. Mol Biol Cell. 2009;20(17):3801-3809.
32. Hewish M, Martin SA, Elliott R, Cunningham D, Lord CJ, Ashworth A. Cytosine-based nucleoside analogs are selectively lethal to DNA mismatch repair- deficient tumour cells by enhancing levels of intracellular oxidative stress. Br J Cancer. 2013;108(4):983-992.
33. Humbert O, Achour I, Lautier D, Laurent G, Salles B. hP2 expression is driven by AP1- dependent regulation through phorbol-ester
exposure. Nucleic Acids Res. 2003;31(19):
5627-5634.
34. Volpe G, Walton DS, Del Pozzo W, et al.
C/EBPα and MYB regulate FLT3 expression
in AML. Leukemia. 2013;27(7):1487-1496. 35. Collins CT, Hess JL. Deregulation of the HOXA9/MEIS1 axis in acute leukemia. Curr
Opin Hematol. 2016;23(4):354-361.
36. Yuan LL, Green AS, Bertoli S, et al. Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia.
Leukemia. 2014;28(2):293-301.
37. Hasselbach L, Haase S, Fischer D, Kolberg
HC, Sturzbecher HW. Characterisation of the promoter region of the human DNA- repair gene Rad51. Eur J Gynaecol Oncol. 2005;26(6):589-598.
38. Shaulian E, Karin M. AP-1 in cell prolifera- tion and survival. Oncogene. 2001;20(19): 2390-2400.
39. Raleigh JM, O'Connell MJ. The G(2) DNA damage checkpoint targets both Wee1 and Cdc25. J Cell Sci. 2000;113(Pt 10):1727-1736.
40. Lee HJ, Cao Y, Pham V, et al. Ras-MEK sig- naling mediates a critical Chk1-dependent DNA damage response in cancer cells. Mol Cancer Ther. 2017;16(4):694-704.
41. Schulze J, Lopez-Contreras AJ, Uluckan O, Grana-Castro O, Fernandez-Capetillo O, Wagner EF. Fos-dependent induction of Chk1 protects osteoblasts from replication stress. Cell Cycle. 2014;13(12):1980-1986.
42. Tibes R, Bogenberger JM, Chaudhuri L, et al. RNAi screening of the kinome with cytara- bine in leukemias. Blood. 2012;119(12): 2863-2872.
43. Henning W, Sturzbecher HW. Homologous recombination and cell cycle checkpoints: Rad51 in tumour progression and therapy resistance. Toxicology. 2003;193(1-2):91-109.
44. Seedhouse CH, Hunter HM, Lloyd-Lewis B, et al. DNA repair contributes to the drug- resistant phenotype of primary acute myeloid leukaemia cells with FLT3 internal tandem duplications and is reversed by the FLT3 inhibitor PKC412. Leukemia. 2006;20(12):2130-2136.
45. Greenblatt S, Li L, Slape C, et al. Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model. Blood. 2012;119(12):2883-2894.
46. Lin YW, Slape C, Zhang Z, Aplan PD. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood. 2005;106(1):287-295.
47. Sallmyr A, Fan J, Rassool FV. Genomic insta- bility in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett. 2008;270(1):1-9.
48. Cardama GA, Alonso DF, Gonzalez N, et al. Relevance of small GTPase Rac1 pathway in drug and radio-resistance mechanisms: opportunities in cancer therapeutics. Crit Rev Oncol Hematol. 2018;124:29-36.
49. Marei H, Malliri A. Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases. 2017;8(3):139-163.
50. Nishikimi A, Uruno T, Duan X, et al. Blockade of inflammatory responses by a small-molecule inhibitor of the Rac activator DOCK2. Chem Biol. 2012;19(4):488-497.
2428
haematologica | 2019; 104(12)


































































































   112   113   114   115   116