Page 81 - 2019_11 Resto del Mondo-web
P. 81

Deubiquitylase USP7 and human erythropoiesis
strated in our present study, it will be interesting in future studies to examine whether the altered expression of GATA1 may be associated with changes in USP7 expres- sion in certain blood disorders.
In summary, we have uncovered a previously unrecog- nized role for a deubiquitylase, USP7, in human terminal erythroid differentiation and have identified USP7 as a deubiquitylase of GATA1. Our findings provide new and novel insights into mechanisms of regulating human ery- thropoiesis.
Acknowledgments
This work was supported by the National Key Research and Development Program of China (2018YFA0107800), the Natural Science Foundation of China (81770107,81672760, 81920108004, 81270576, 81800125, 81470362 and 81530005), National Institutes of Health grants (DK100810 and DK32094), the Strategic Priority Research Program of Central South University (zLXD2017004) and the postgraduate innovation project of Central South University (2016zzts165).
References
1. Hattangadi SM, Wong P, Zhang L, et al. From stem cell to red cell: regulation of ery- thropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifica- tions. Blood. 2011;118(24):6258-6268.
2. AnX,SchulzVP,LiJ,etal.Globaltranscrip- tome analyses of human and murine termi- nal erythroid differentiation. Blood. 2014;123(22):3466-3477.
3. Nandakumar SK, Ulirsch JC, Sankaran VG. Advances in understanding erythropoiesis: evolving perspectives. Br J Haematol. 2016;173(2):206-218.
4. Dzierzak E, Philipsen S. Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med. 2013;3(4): a011601.
5. Amm I, Sommer T, Wolf DH. Protein qual- ity control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta. 2014;1843 (1):182-196.
6. Ciechanover A, Hod Y, Hershko A. A heat- stable polypeptide component of an ATP- dependent proteolytic system from reticu- locytes. Biochem Biophys Res Commun. 1978;81(4):1100-1105.
7. Li B, Jia N, Kapur R, Chun KT. Cul4A tar- gets p27 for degradation and regulates pro- liferation, cell cycle exit, and differentiation during erythropoiesis. Blood. 2006;107(11): 4291-4299.
8. Waning DL, Li B, Jia N, et al. Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis. Blood. 2008;112(2):320-329.
9. Nguyen AT, Prado MA, Schmidt PJ, et al. UBE2O remodels the proteome during ter- minal erythroid differentiation. Science. 2017;357(6350).
10. D'Andrea A, Pellman D. Deubiquitinating enzymes: a new class of biological regula- tors. Crit Rev Biochem Mol Biol. 1998;33(5):337-352.
11. Hanpude P, Bhattacharya S, Dey AK, Maiti TK. Deubiquitinating enzymes in cellular signaling and disease regulation. IUBMB Life.2015;67(7):544-555.
12. Zlatanou A, Sabbioneda S, Miller ES, et al. USP7 is essential for maintaining Rad18 stability and DNA damage tolerance. Oncogene. 2016;35(8):965-976.
13. Van der Knaap JA, Kumar BR, Moshkin YM, et al. GMP synthetase stimulates his- tone H2B deubiquitylation by the epigenet- ic silencer USP7. Mol Cell. 2005;17(5):695- 707.
14. Alonso-de Vega I, Martín Y, Smits VA. USP7 controls Chk1 protein stability by
direct deubiquitination. Cell Cycle. 2014;13
(24):3921-3926.
15. Li M, Chen D, Shiloh A, et al.
Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 2002;416(6881):648-653.
16. Daubeuf S, Singh D, Tan Y, et al. HSV ICP0 recruits USP7 to modulate TLR-mediated innate response. Blood. 2009;113(14):3264- 3275.
17. Huang Z, Wu Q, Guryanova OA, et al. Deubiquitylase HAUSP stabilizes REST and promotes maintenance of neural progenitor cells. Nat Cell Biol. 2011;13(2):142-152.
18. Tang Y, Lv L, Li W, et al. Protein deubiqui- tinase USP7 is required for osteogenic dif- ferentiation of human adipose-derived stem cells. Stem Cell Res Ther. 2017;8(1):186
19. Gao Y, Koppen A, Rakhshandehroo M, et al. Early adipogenesisis regulated through USP7-mediated deubiquitylation of the histone acetyltransferase TIP60. Nat Commun. 2013;4:2656.
20. Crispino JD. GATA1 in normal and malig- nant hematopoiesis. Semin Cell Dev Biol. 2005;16(1):137-147.
21. Fujiwara Y, Browne CP, Cunniff K, et al. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A. 1996;93(22):12355-12358.
22. Pevny L, Simon MC, Robertson E, et al. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature. 1991; 349(6303): 257-260.
23. Whyatt D, Lindeboom F, Karis A, et al. An intrinsic but cell-nonautonomous defect in GATA-1-overexpressing mouse erythroid cells. Nature. 2000;406(6795):519-524.
24. Hernandez-Hernandez A, Ray P, Litos G, et al. Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J. 2006;25(14):3264- 3274.
25. Hu J, Liu J, Xue F, et al. Isolation and func- tional characterization of human erythro- blasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16): 3246-3253.
26. Ludwig LS, Gazda HT, Eng JC, et al. Altered translation of GATA1 in Diamond- Blackfan anemia. Nat Med. 2014;20(7):748- 753.
27. Han X, Zhang J, Peng Y, et al. Unexpected role for p19INK4d in posttranscriptional regulation of GATA1 and modulation of human terminal erythropoiesis. Blood. 2017;129(2):226-237.
28. Choo YS, Zhang Z. Detection of protein
ubiquitination. J Vis Exp. 2009;(30).
29. Yan H, Wang Y, Qu X, et al. Distinct roles for TET family proteins in regulating human erythropoiesis. Blood. 2017;129
(14):2002-2012.
30. Huang Y, Hale J, Wang Y, et al. SF3B1 defi-
ciency impairs human erythropoiesis via activation of p53 pathway: implications for understanding of ineffective erythropoiesis in MDS. J Hematol Oncol. 2018;11(1):19.
31. Chauhan D, Tian Z, Nicholson B, et al. A small molecule inhibitor of ubiquitin-spe- cific protease-7 induces apoptosis in multi- ple myeloma cells and overcomes borte- zomib resistance. Cancer Cell. 2012;22(3): 345-358.
32. Altun M, Kramer H B, Willems L I, et al. Activity-based chemical proteomics accel- erates inhibitor development for deubiqui- tylating enzymes. Chem Biol. 2011;18(11): 1401-1412.
33. Morotti A, Panuzzo C, Crivellaro S, et al. BCR-ABL disrupts PTEN nuclear-cytoplas- mic shuttling through phosphorylation- dependent activation of HAUSP. Leukemia. 2014;28(6):1326-1333.
34. Song MS, Salmena L, Carracedo A, et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML net- work. Nature. 2008;455(7214):813-817.
35. Crossley M, Tsang A P, Bieker J J, et al. Regulation of the erythroid Kruppel-like factor (EKLF) gene promoter by the ery- throid transcription factor GATA-1. J Biol Chem. 1994;269(22):15440-15444.
36. Kobayashi M, Yamamoto M. Regulation of GATA1 gene expression. J Biol Chem. 2007;142(1):1-10.
37. Kaneko H, Shimizu R, Yamamoto M. GATA factor switching during erythroid differentiation. Curr Opin Hematol. 2010; 17(3):163-168.
38. Ribeil JA, Zermati Y, Vandekerckhove J, et al. Hsp70 regulates erythropoiesis by pre- venting caspase-3-mediated cleavage of GATA-1. Nature. 2007;445(7123):102-105.
39. Frisan E, Vandekerckhove J, de Thonel A, et al. Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syn- dromes. Blood. 2012;119(6):1532-1542.
40. Arlet JB, Ribeil JA, Guillem F, et al. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalas- saemia. Nature. 2014;514(7521):242-246.
41. Khajuria RK, Munschauer M, Ulirsch JC, et al. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell. 2018;173(1): 90-103.
42. de Thonel A, Vandekerckhove J, Lanneau D, et al. HSP27 controls GATA-1 protein
haematologica | 2019; 104(11)
2187


































































































   79   80   81   82   83