Page 71 - 2019_11 Resto del Mondo-web
P. 71

Loss of Notch1 TAD interferes with niche recovery
Biol. 2017;19(8):915-927.
16. Briot A, Civelek M, Seki A, et al. Endothelial
NOTCH1 is suppressed by circulating lipids and antagonizes inflammation during ather- osclerosis. J Exp Med. 2015;212(12):2147- 2163.
17. Mack JJ, Mosqueiro TS, Archer BJ, et al. NOTCH1 is a mechanosensor in adult arter- ies. Nat Commun. 2017;8(1):1620.
18. Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versa- tility in function. Development. 2011;138 (17):3593-3612.
19. Kurooka H, Honjo T. Functional interaction between the mouse notch1 intracellular region and histone acetyltransferases PCAF and GCN5. J Biol Chem. 2000;275(22): 17211-17220.
20. Kurooka H, Kuroda K, Honjo T. Roles of the ankyrin repeats and C-terminal region of the mouse notch1 intracellular region. Nucleic Acids Res. 1998;26(23):5448-5455.
21. Ong CT, Cheng HT, Chang LW, et al. Target selectivity of vertebrate notch proteins. Collaboration between discrete domains and CSL-binding site architecture deter- mines activation probability. J Biol Chem. 2006;281(8):5106-5119.
22. Gerhardt DM, Pajcini KV, D'Altri T, et al. The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev. 2014;28(6):576-593.
23. High F, Epstein JA. Signalling pathways reg- ulating cardiac neural crest migration and differentiation. Novartis Found Symp. 2007;283:152-161; discussion 161-154, 238- 241.
24. High FA, Jain R, Stoller JZ, et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue- tissue interactions during outflow tract development. J Clin Invest. 2009;119(7): 1986-1996.
25. Longley DB, Harkin DP, Johnston PG. 5-flu- orouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3(5):330- 338.
26. Lerner C, Harrison DE. 5-Fluorouracil spares hemopoietic stem cells responsible for long- term repopulation. Exp Hematol. 1990;18 (2):114-118.
27. Radtke F, Wilson A, Stark G, et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity. 1999;10(5):547-558.
28. Tanigaki K, Han H, Yamamoto N, et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol. 2002;3(5):443-450.
29. Pajcini KV, Xu L, Shao L, et al. MAFB enhances oncogenic Notch signaling in T cell acute lymphoblastic leukemia. Sci Signal. 2017;10(505).
30. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self- reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285-299.
31. Avecilla ST, Hattori K, Heissig B, et al.
Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10(1):64-71.
32. Kiel MJ, Yilmaz OH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109-1121.
33. Rafii S, Shapiro F, Pettengell R, et al. Human bone marrow microvascular endothelial cells support long-term proliferation and dif- ferentiation of myeloid and megakaryocytic progenitors. Blood. 1995;86(9):3353-3363.
34. Shao L, Sun Y, Zhang Z, et al. Deletion of proapoptotic Puma selectively protects hematopoietic stem and progenitor cells against high-dose radiation. Blood. 2010;115(23):4707-4714.
35. Zhao M, Perry JM, Marshall H, et al. Megakaryocytes maintain homeostatic qui- escence and promote post-injury regenera- tion of hematopoietic stem cells. Nat Med. 2014;20(11):1321-1326.
36. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during home- ostasis and regeneration. Nat Med. 2014;20(8):833-846.
37. Yashiro-Ohtani Y, Wang H, Zang C, et al. Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc Natl Acad Sci U S A. 2014; 111(46):E4946-4953.
38. Wang H, Zou J, Zhao B, et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A. 2011;108(36): 14908-14913.
39. Hassanshahi M, Hassanshahi A, Khabbazi S, Su YW, Xian CJ. Bone marrow sinusoidal endothelium: damage and potential regener- ation following cancer radiotherapy or chemotherapy. Angiogenesis. 2017;20(4): 427-442.
40. Zhang J, Fukuhara S, Sako K, et al. Angiopoietin-1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of beta-catenin. J Biol Chem. 2011;286(10):8055-8066.
41. Bourillot PY, Aksoy I, Schreiber V, et al. Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells. 2009;27(8):1760- 1771.
42. Kumano K, Chiba S, Kunisato A, et al. Notch1 but not Notch2 is essential for gen- erating hematopoietic stem cells from endothelial cells. Immunity. 2003;18(5):699- 711.
43. Karanu FN, Murdoch B, Gallacher L, et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med. 2000;192(9):1365-1372.
44. Maillard I, Koch U, Dumortier A, et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell. 2008;2(4):356- 366.
45.
46.
47.
48.
49.
50.
51.
52. 53.
54.
55.
56.
57.
58.
59.
60.
Mancini SJ, Mantei N, Dumortier A, et al. Jagged1-dependent Notch signaling is dis- pensable for hematopoietic stem cell self- renewal and differentiation. Blood. 2005;105(6):2340-2342.
Poulos MG, Guo P, Kofler NM, et al. Endothelial Jagged-1 is necessary for home- ostatic and regenerative hematopoiesis. Cell Rep. 2013;4(5):1022-1034.
Duarte S, Woll PS, Buza-Vidas N, et al. Canonical Notch signaling is dispensable for adult steady-state and stress myelo-erythro- poiesis. Blood. 2018;131(15):1712-1719. Kusumbe AP, Ramasamy SK, Itkin T, et al. Age-dependent modulation of vascular nich- es for haematopoietic stem cells. Nature. 2016;532(7599):380-384.
Guo P, Poulos MG, Palikuqi B, et al. Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression. J Clin Invest. 2017;127 (12):4242-4256.
Shirota T, Tavassoli M. Cyclophosphamide- induced alterations of bone marrow endothelium: implications in homing of marrow cells after transplantation. Exp Hematol. 1991;19(5):369-373.
Murata K, Hattori M, Hirai N, et al. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol Cell Biol. 2005;25(10):4262-4271.
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and cancer. Cancer Discov. 2015;5(10):1024-1039.
Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell. 2002;3(3):411- 423.
Yancopoulos GD, Davis S, Gale NW, et al. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801): 242-248.
Juffer P, Jaspers RT, Lips P, Bakker AD, Klein- Nulend J. Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab. 2012;302(4):E389-395. Schlaeppi JM, Gutzwiller S, Finkenzeller G, Fournier B. 1,25-Dihydroxyvitamin D3 induces the expression of vascular endothe- lial growth factor in osteoblastic cells. Endocr Res. 1997;23(3):213-229.
Sacchetti B, Funari A, Michienzi S, et al. Self- renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324- 336.
MacDonald HR, Wilson A, Radtke F. Notch1 and T-cell development: insights from con- ditional knockout mice. Trends Immunol. 2001;22(3):155-160.
Wilson A, MacDonald HR, Radtke F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med. 2001;194(7):1003-1012.
Yu VW, Saez B, Cook C, et al. Specific bone cells produce DLL4 to generate thymus- seeding progenitors from bone marrow. J Exp Med. 2015;212(5):759-774.
haematologica | 2019; 104(11)
2177


































































































   69   70   71   72   73