Page 31 - 2019_10 resto del Mondo_web
P. 31

Extended myeloid-based model of lineage commitment
67. Boiers C, Richardson SE, Laycock E, et al. A human IPS model implicates embryonic B- myeloid fate restriction as developmental susceptibility to B acute lymphoblastic leukemia-associated ETV6-RUNX1. Dev Cell. 2018;44(3):362-377.e367.
68. Kawamoto H, Ohmura K, Katsura Y. Presence of progenitors restricted to T, B, or myeloid lineage, but absence of multipotent stem cells, in the murine fetal thymus. J Immunol. 1998;161(8):3799-3802.
69. Wada H, Masuda K, Satoh R, et al. Adult T- cell progenitors retain myeloid potential. Nature. 2008;452(7188):768-772.
70. Kawamoto H, Ohmura K, Katsura Y. Direct evidence for the commitment of hematopoi- etic stem cells to T, B and myeloid lineages in murine fetal liver. Int Immunol. 1997;9(7):1011-1019.
71. Yamamoto R, Wilkinson AC, Nakauchi H. Changing concepts in hematopoietic stem cells. Science. 2018;362(6417):895-896.
72. Sanjuan-Pla A, Macaulay IC, Jensen CT, et al. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierar- chy. Nature. 2013;502(7470):232-236.
73. Carrelha J, Meng Y, Kettyle LM, et al. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature. 2018;554(7690):106-111.
74. Kawamoto H. A close developmental rela- tionship between the lymphoid and myeloid lineages. Trends Immunol. 2006;27(4):169-175.
75. Pietras EM. Inflammation: a key regulator of hematopoietic stem cell fate in health and disease. Blood. 2017;130(15):1693-1698.
76. Mann M, Mehta A, de Boer CG, et al. Heterogeneous responses of hematopoietic stem cells to inflammatory stimuli are altered with age. Cell Rep. 2018;25(11): 2992-3005.e2995.
77. Dutta P, Sager HB, Stengel KR, et al. Myocardial infarction activates CCR2(+) hematopoietic stem and progenitor cells. Cell Stem Cell. 2015;16(5):477-487.
78. Fu SH, Yeh LT, Chu CC, Yen BL, Sytwu HK. New insights into Blimp-1 in T lympho- cytes: a divergent regulator of cell destiny
and effector function. J Biomed Sci.
2017;24(1):49.
79. Chang DH, Angelin-Duclos C, Calame K.
BLIMP-1: trigger for differentiation of myeloid lineage. Nat Immunol. 2000;1(2): 169-176.
80. Garcia-Santos D, Schranzhofer M, Horvathova M, et al. Heme oxygenase 1 is expressed in murine erythroid cells where it controls the level of regulatory heme. Blood. 2014;123(14):2269-2277.
81. Tzima S, Victoratos P, Kranidioti K, Alexiou M, Kollias G. Myeloid heme oxygenase-1 regulates innate immunity and autoimmuni- ty by modulating IFN-beta production. J Exp Med. 2009;206(5):1167-1179.
82. Igarashi K, Itoh-Nakadai A. Orchestration of B lymphoid cells and their inner myeloid by Bach. Curr Opin Immunol. 2016;39(136- 142.
83. Krzemien J, Crozatier M, Vincent A. Ontogeny of the Drosophila larval hematopoietic organ, hemocyte homeosta- sis and the dedicated cellular immune response to parasitism. Int J Dev Biol. 2010;54(6-7):1117-1125.
84. Rosental B, Kowarsky M, Seita J, et al. Complex mammalian-like haematopoietic system found in a colonial chordate. Nature. 2018;564(7736):425-429.
85. Amoutzias GD, Veron AS, Weiner J, 3rd, et al. One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site speci- ficity. Mol Biol Evol. 2007;24(3):827-835.
86. Shubin N. Your Inner Fish: A Journey into the 3.5-Billion-Year History of the Human Body. Knopf Doubleday Publishing Group. 2008.
87. Shinnakasu R, Inoue T, Kometani K, et al. Regulated selection of germinal-center cells into the memory B cell compartment. Nat Immunol. 2016;17(7):861-869.
88. Roychoudhuri R, Clever D, Li P, et al. BACH2 regulates CD8(+) T cell differentia- tion by controlling access of AP-1 factors to enhancers. Nat Immunol. 2016;17(7):851- 860.
89. Sidwell T, Kallies A. Bach2 is required for B
cell and T cell memory differentiation. Nat
Immunol. 2016;17(7):744-745.
90. Baumgarth N. B-1 cell heterogeneity and the
regulation of natural and antigen-induced IgM production. Front Immunol. 2016; 7(324.
91. Hall BM. T Cells: soldiers and spies--the sur- veillance and control of effector T cells by regulatory T cells. Clin J Am Soc Nephrol. 2015;10(11):2050-2064.
92. Abreu R, Quinn F, Giri PK. Role of the hep- cidin-ferroportin axis in pathogen-mediated intracellular iron sequestration in human phagocytic cells. Blood Adv. 2018;2(10): 1089-1100.
93. Mitroulis I, Ruppova K, Wang B, et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell. 2018;172(1-2):147-161.e112.
94. Tefferi A, Vardiman JW. Myelodysplastic syndromes. N Engl J Med. 2009;361(19): 1872-1885.
95. Yoshida K, Sanada M, Shiraishi Y, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64-69.
96. Chi VLD, Garaud S, De Silva P, et al. Age- related changes in the BACH2 and PRDM1 genes in lymphocytes from healthy donors and chronic lymphocytic leukemia patients. BMC Cancer. 2019;19(1):81.
97. Yamamoto R, Wilkinson AC, Ooehara J, et al. Large-scale clonal analysis resolves aging of the mouse hematopoietic stem cell com- partment. Cell Stem Cell. 2018;22(4):600- 607.e604.
98. Loh PR, Genovese G, Handsaker RE, et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature. 2018;559(7714):350-355.
99. Kawanishi S, Ohnishi S, Ma N, Hiraku Y, Murata M. Crosstalk between DNA damage and inflammation in the multiple steps of carcinogenesis. Int J Mol Sci. 2017;18(8).
100.Afzali B, Gronholm J, Vandrovcova J, et al. BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nat Immunol. 2017;18 (7):813-823.
haematologica | 2019; 104(10)
1927


































































































   29   30   31   32   33