Page 30 - 2019_10 resto del Mondo_web
P. 30

H. Kato et al.
9. Berliner N. Anemia in the elderly. Trans Am Clin Climatol Assoc. 2013;124:230-237.
10. Nikolich-Zugich J. The twilight of immuni-
ty: emerging concepts in aging of the immune system. Nat Immunol. 2018;19 (1):10-19.
11. Wang J, Geiger H, Rudolph KL. Immunoaging induced by hematopoietic stem cell aging. Curr Opin Immunol. 2011;23(4):532-536.
12. Chung SS, Park CY. Aging, hematopoiesis, and the myelodysplastic syndromes. Blood Adv. 2017;1(26):2572-2578.
13. Jose SS, Bendickova K, Kepak T, Krenova Z, Fric J. Chronic inflammation in immune aging: role of pattern recognition receptor crosstalk with the telomere complex? Front Immunol. 2017;8:1078.
14. Karamitros D, Stoilova B, Aboukhalil Z, et al. Single-cell analysis reveals the continuum of human lympho-myeloid progenitor cells. Nat Immunol. 2018;19(1):85-97.
15. Perie L, Duffy KR, Kok L, de Boer RJ, Schumacher TN. The branching point in erythro-myeloid differentiation. Cell. 2015; 163(7):1655-1662.
16. Paul F, Arkin Y, Giladi A, et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell. 2015;163(7):1663-1677.
17. Itoh-Nakadai A, Hikota R, Muto A, et al. The transcription repressors Bach2 and Bach1 promote B cell development by repressing the myeloid program. Nat Immunol 2014;15(12):1171-1180.
18. Itoh-Nakadai A, Matsumoto M, Kato H, et al. A Bach2-Cebp gene regulatory network for the commitment of multipotent hematopoietic progenitors. Cell Rep. 2017; 18(10):2401-2414.
19. Kato H, Itoh-Nakadai A, Matsumoto M, et al. Infection perturbs Bach2- and Bach1- dependent erythroid lineage 'choice' to cause anemia. Nat Immunol. 2018;19(10): 1059-1070.
20. Igarashi K, Watanabe-Matsui M. Wearing red for signaling: the heme-bach axis in heme metabolism, oxidative stress response and iron immunology. Tohoku J Exp Med. 2014;232(4):229-253.
21. Foletta VC, Segal DH, Cohen DR. Transcriptional regulation in the immune system: all roads lead to AP-1. J Leukoc Biol. 1998;63(2):139-152.
22. Kobayashi M, Kato H, Hada H, et al. Iron- heme-Bach1 axis is involved in erythroblast adaptation to iron deficiency. Haematologica. 2017;102(3):454-465.
23. Igarashi K, Kurosaki T, Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol. 2017;17(7):437-450.
24. Kim EH, Gasper DJ, Lee SH, Plisch EH, Svaren J, Suresh M. Bach2 regulates home- ostasis of Foxp3+ regulatory T cells and pro- tects against fatal lung disease in mice. J Immunol. 2014;192(3):985-995.
25. Kometani K, Nakagawa R, Shinnakasu R, et al. Repression of the transcription factor Bach2 contributes to predisposition of IgG1 memory B cells toward plasma cell differen- tiation. Immunity. 2013;39(1):136-147.
26. Muto A, Ochiai K, Kimura Y, et al. Bach2 represses plasma cell gene regulatory net- work in B cells to promote antibody class switch. EMBO J. 2010;29(23):4048-4061.
27. Muto A, Tashiro S, Nakajima O, et al. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature. 2004;429(6991):566-571.
28. Roychoudhuri R, Hirahara K, Mousavi K, et al. BACH2 represses effector programs to
stabilize T(reg)-mediated immune homeo-
stasis. Nature. 2013;498(7455):506-510.
29. Tsukumo S, Unno M, Muto A, et al. Bach2 maintains T cells in a naive state by sup- pressing effector memory-related genes. Proc Natl Acad Sci U S A. 2013;110(26):
10735-10740.
30. Yu X, Lao Y, Teng XL, et al. SENP3 maintains
the stability and function of regulatory T cells via BACH2 deSUMOylation. Nature Commun. 2018;9(1):3157.
31. Yamamoto R, Morita Y, Ooehara J, et al. Clonal analysis unveils self-renewing line- age-restricted progenitors generated directly from hematopoietic stem cells. Cell. 2013;154(5):1112-1126.
32. Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progeni- tor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193-197.
33. Boyer SW, Schroeder AV, Smith-Berdan S, Forsberg EC. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell. 2011;9(1):64-73.
34. Adolfsson J, Mansson R, Buza-Vidas N, et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic poten- tial a revised road map for adult blood lineage commitment. Cell. 2005;121(2):295-306.
35. Pietras EM, Reynaud D, Kang YA, et al. Functionally distinct subsets of lineage- biased multipotent progenitors control blood production in normal and regenera- tive conditions. Cell Stem Cell. 2015;17 (1):35-46.
36. Naik SH, Perie L, Swart E, et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature. 2013;496(7444):229-232.
37. Yu VWC, Yusuf RZ, Oki T, et al. Epigenetic memory underlies cell-autonomous hetero- geneous behavior of hematopoietic stem cells. Cell. 2016;167(5):1310-1322.e1317.
38. Imayoshi I, Isomura A, Harima Y, et al. Oscillatory control of factors determining multipotency and fate in mouse neural pro- genitors. Science. 2013;342(6163):1203- 1208.
39. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327-334.
40. Busch K, Rodewald HR. Unperturbed vs. post-transplantation hematopoiesis: both in vivo but different. Curr Opin Hematol. 2016;23(4):295-303.
41. Nimmo RA, May GE, Enver T. Primed and ready: understanding lineage commitment through single cell analysis. Trends Cell Biol. 2015;25(8):459-467.
42. Skylaki S, Hilsenbeck O, Schroeder T. Challenges in long-term imaging and quan- tification of single-cell dynamics. Nat Biotechnol. 2016;34(11):1137-1144.
43. Golan K, Kumari A, Kollet O, et al. Daily onset of light and darkness differentially controls hematopoietic stem cell differentia- tion and maintenance. Cell Stem Cell. 2018;23(4):572-585.e577.
Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature. 2017;548(7668):456-460.
48. Wolff L, Humeniuk R. Concise review: ery- throid versus myeloid lineage commitment: regulating the master regulators. Stem Cells. 2013;31(7):1237-1244.
49. Collombet S, van Oevelen C, Sardina Ortega JL, et al. Logical modeling of lym- phoid and myeloid cell specification and transdifferentiation. Proc Natl Acad Sci U S A. 2017;114(23):5792-5799.
50. Teles J, Pina C, Eden P, Ohlsson M, Enver T, Peterson C. Transcriptional regulation of lin- eage commitment--a stochastic model of cell fate decisions. PLoS Comput Biol. 2013;9(8):e1003197.
51. Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol. 2017;17(3):208-214.
52. Laurenti E, Gottgens B. From haematopoiet- ic stem cells to complex differentiation land- scapes. Nature. 2018;553(7689):418-426.
53. Heyworth C, Pearson S, May G, Enver T. Transcription factor-mediated lineage switching reveals plasticity in primary com- mitted progenitor cells. EMBO J. 2002;21 (14):3770-3781.
54. Pina C, Teles J, Fugazza C, et al. Single-cell network analysis identifies DDIT3 as a nodal lineage regulator in hematopoiesis. Cell Rep. 2015;11(10):1503-1510.
55. Mayran A, Drouin J. Pioneer transcription factors shape the epigenetic landscape. J Biol Chem. 2018;293(36):13795-13804.
56. Bonifer C. Epigenetic plasticity of hematopoietic cells. Cell Cycle. 2005;4(2): 211-214.
57. Herb BR, Wolschin F, Hansen KD, et al. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci. 2012;15(10):1371-1373.
58. Avellino R, Delwel R. Expression and regu- lation of C/EBPalpha in normal myelopoiesis and in malignant transforma- tion. Blood. 2017;129(15):2083-2091.
59. Hirai H, Zhang P, Dayaram T, et al. C/EBPbeta is required for 'emergency' gran- ulopoiesis. Nat Immunol. 2006;7(7):732-739.
60. Iwasaki H, Somoza C, Shigematsu H, et al. Distinctive and indispensable roles of PU.1 in maintenance of hematopoietic stem cells and their differentiation. Blood. 2005;106 (5):1590-1600.
61. Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH. Arrested development of embry- onic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A. 1996;93(22):12355- 12358.
62. Hoppe PS, Schwarzfischer M, Loeffler D, et al. Early myeloid lineage choice is not initi- ated by random PU.1 to GATA1 protein ratios. Nature. 2016;535(7611):299-302.
63. Palii CG, Cheng Q, Gillespie MA, et al. Single-cell proteomics reveal that quantita- tive changes in co-expressed lineage-specific transcription factors determine cell fate. Cell Stem Cell. 2019;24(5):812-820.e815.
64. Weinberg ED. Iron loading and disease sur- veillance. Emerg Infect Dis. 1999;5(3):346-
44. Teschendorff AE, Enver T. Single-cell
entropy for accurate estimation of differenti-
ation potency from a cell's transcriptome.
Nat Commun. 2017;8:15599. 352.
45. Wang X, Allen WE, Wright MA, et al. Three- dimensional intact-tissue sequencing of sin- gle-cell transcriptional states. Science. 2018;361(6400).
46. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS, et al. Clonal analysis of lineage fate in native haematopoiesis. Nature. 2018;553(7687):212-216.
47. Pei W, Feyerabend TB, Rossler J, et al.
65. Yanez A, Goodridge HS, Gozalbo D, Gil ML. TLRs control hematopoiesis during infection. Eur J Immunol. 2013;43(10):2526- 2533.
66. Hsu W, Kerppola TK, Chen PL, Curran T, Chen-Kiang S. Fos and Jun repress transcrip- tion activation by NF-IL6 through associa- tion at the basic zipper region. Mol Cell Biol. 1994;14(1):268-276.
1926
haematologica | 2019; 104(10)


































































































   28   29   30   31   32