Page 89 - 2019_09-HaematologicaMondo-web
P. 89

A unique ABCB7-FECH-ABCB10 complex
References
1. Gbelska Y, Krijger JJ, Breunig KD. Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res. 2006;6(3):345-355.
2. RobeyRW,PluchinoKM,HallMD,FojoAT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18(7):452-464.
3. Srinivasan V, Pierik AJ, Lill R. Crystal struc- tures of nucleotide-free and glutathione- bound mitochondrial ABC transporter Atm1. Science. 2014;343(6175):1137-1140.
4. Lee JY, Yang JG, Zhitnitsky D, Lewinson O, Rees DC. Structural basis for heavy metal detoxification by an Atm1-type ABC exporter. Science. 2014;343(6175):1133- 1136.
5. Zutz A, Gompf S, Schagger H, Tampe R. Mitochondrial ABC proteins in health and disease. Biochim Biophys Acta. 2009;1787(6):681-690.
6. Krishnamurthy PC, Du G, Fukuda Y, et al. Identification of a mammalian mitochondrial porphyrin transporter. Nature. 2006;443 (7111):586-589.
7. Tsuchida M, Emi Y, Kida Y, Sakaguchi M. Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus. Biochem Biophys Res Commun. 2008;369(2):369-375.
8. Kiss K, Brozik A, Kucsma N, et al. Shifting the paradigm: the putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of ery- throcytes. PLoS One. 2012;7(5):e37378.
9. Paterson JK, Shukla S, Black CM, et al. Human ABCB6 localizes to both the outer mitochondrial membrane and the plasma membrane. Biochemistry. 2007;46(33):9443- 9452.
10. Savary S, Allikmets R, Denizot F, et al. Isolation and chromosomal mapping of a novel ATP-binding cassette transporter con- served in mouse and human. Genomics. 1997;41(2):275-278.
11. PondarreC,AntiochosBB,CampagnaDR,et al. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Genet. 2006;15(6):953- 964.
12. Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM. Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked siderob- lastic anemia and ataxia (XLSA/A). Hum Mol Genet. 1999;8(5):743-749.
13. Bekri S, Kispal G, Lange H, et al. Human ABC7 transporter: gene structure and muta- tion causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron- sulfur protein maturation. Blood. 2000;96(9):3256-3264.
14. Maguire A, Hellier K, Hammans S, May A. X-linked cerebellar ataxia and sideroblastic anaemia associated with a missense muta- tion in the ABC7 gene predicting V411L. Br J Haematol. 2001;115(4):910-917.
15. Pondarre C, Campagna DR, Antiochos B, Sikorski L, Mulhern H, Fleming MD. Abcb7, the gene responsible for X-linked sideroblas- tic anemia with ataxia, is essential for hematopoiesis. Blood. 2007;109(8):3567- 3569.
16. Weiss MJ, Yu C, Orkin SH. Erythroid-cell- specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a
gene-targeted cell line. Mol Cell Biol.
1997;17(3):1642-1651.
17. Rouault TA. Mitochondrial iron overload:
causes and consequences. Curr Opin Genet
Dev. 2016;38:31-37.
18. Rouault TA, Maio N. Biogenesis and func-
tions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and piv- otal metabolic pathways. J Biol Chem. 2017;292(31):12744-12753.
19. Ryu MS, Zhang D, Protchenko O, Shakoury- Elizeh M, Philpott CC. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis. J Clin Invest. 2017;127(5):1786- 1797.
20. Welch JJ, Watts JA, Vakoc CR, et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood. 2004;104(10):3136-3147.
21. Melefors O, Goossen B, Johansson HE, Stripecke R, Gray NK, Hentze MW. Translational control of 5-aminolevulinate synthase mRNA by iron-responsive ele- ments in erythroid cells. J Biol Chem. 1993;268(8):5974-5978.
22. Ye H, Jeong SY, Ghosh MC, et al. Glutaredoxin 5 deficiency causes sideroblas- tic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts. J Clin Invest. 2010;120(5):1749-1761.
23. Zenke-Kawasaki Y, Dohi Y, Katoh Y, et al. Heme induces ubiquitination and degrada- tion of the transcription factor Bach1. Mol Cell Biol. 2007;27(19):6962-6971.
24. Tahara T, Sun J, Igarashi K, Taketani S. Heme-dependent up-regulation of the alpha- globin gene expression by transcriptional repressor Bach1 in erythroid cells. Biochem Biophys Res Commun. 2004;324(1):77-85.
25. Dailey HA, Meissner PN. Erythroid heme biosynthesis and its disorders. Cold Spring Harb Perspect Med. 2013;3(4):a011676.
26. Gibson KD, Laver WG, Neuberger A. Initial stages in the biosynthesis of porphyrins. 2. The formation of delta-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J. 1958;70(1):71-81.
27. Whitman JC, Paw BH, Chung J. The role of ClpX in erythropoietic protoporphyria. Hematol Transfus Cell Ther. 2018;40(2):182- 188.
28. Chen JJ. Translational control by heme-regu- lated eIF2alpha kinase during erythropoiesis. Curr Opin Hematol. 2014;21(3):172-178.
29. Cooperman SS, Meyron-Holtz EG, Olivierre-Wilson H, Ghosh MC, McConnell JP, Rouault TA. Microcytic anemia, erythro- poietic protoporphyria, and neurodegenera- tion in mice with targeted deletion of iron- regulatory protein 2. Blood. 2005;106(3): 1084-1091.
30. Taketani S, Kakimoto K, Ueta H, Masaki R, Furukawa T. Involvement of ABC7 in the biosynthesis of heme in erythroid cells: inter- action of ABC7 with ferrochelatase. Blood. 2003;101(8):3274-3280.
31. Chen W, Dailey HA, Paw BH. Ferrochelatase forms an oligomeric complex with mitofer- rin-1 and Abcb10 for erythroid heme biosyn- thesis. Blood. 2010;116(4):628-630.
32. Medlock AE, Shiferaw MT, Marcero JR, et al. Identification of the mitochondrial heme metabolism complex. PLoS One. 2015;10(8): e0135896.
33. Medlock AE, Dailey TA, Ross TA, Dailey HA, Lanzilotta WN. A pi-helix switch selec- tive for porphyrin deprotonation and prod- uct release in human ferrochelatase. J Mol
Biol. 2007;373(4):1006-1016.
34. Medlock A, Swartz L, Dailey TA, Dailey HA,
Lanzilotta WN. Substrate interactions with human ferrochelatase. Proc Natl Acad Sci U S A. 2007;104(6):1789-1793.
35. Kispal G, Csere P, Guiard B, Lill R. The ABC transporter Atm1p is required for mitochon- drial iron homeostasis. FEBS Lett. 1997;418(3):346-350.
36. Leighton J, Schatz G. An ABC transporter in the mitochondrial inner membrane is required for normal growth of yeast. EMBO J. 1995;14(1):188-195.
37. Miao R, Kim H, Koppolu UM, Ellis EA, Scott RA, Lindahl PA. Biophysical characterization of the iron in mitochondria from Atm1p- depleted Saccharomyces cerevisiae. Biochemistry. 2009;48(40):9556-9568.
38. Puccio H, Simon D, Cossee M, et al. Mouse models for Friedreich ataxia exhibit car- diomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramito- chondrial iron deposits. Nat Genet. 2001;27(2):181-186.
39. Camaschella C, Campanella A, De Falco L, et al. The human counterpart of zebrafish shi- raz shows sideroblastic-like microcytic ane- mia and iron overload. Blood. 2007;110(4):1353-1358.
40. Schmitz-Abe K, Ciesielski SJ, Schmidt PJ, et al. Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9. Blood. 2015;126(25): 2734-2738.
41. Crooks DR, Jeong SY, Tong WH, et al. Tissue specificity of a human mitochondrial dis- ease: differentiation-enhanced mis-splicing of the Fe-S scaffold gene ISCU renders patient cells more sensitive to oxidative stress in ISCU myopathy. J Biol Chem. 2012;287(48):40119-40130.
42. Martelli A, Puccio H. Dysregulation of cellu- lar iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mito- chondrial iron accumulation. Front Pharmacol. 2014;5:130.
43. Rutherford JC, Ojeda L, Balk J, Muhlenhoff U, Lill R, Winge DR. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J Biol Chem. 2005;280(11):10135-10540.
44. Hausmann A, Samans B, Lill R, Muhlenhoff U. Cellular and mitochondrial remodeling upon defects in iron-sulfur protein biogene- sis. J Biol Chem. 2008;283(13):8318-8330.
45. Martelli A, Schmucker S, Reutenauer L, et al. Iron regulatory protein 1 sustains mitochon- drial iron loading and function in frataxin deficiency. Cell Metab. 2015;21(2):311-323.
46. Rademakers LH, Koningsberger JC, Sorber CW, Baart de la Faille H, Van Hattum J, Marx JJ. Accumulation of iron in erythroblasts of patients with erythropoietic protoporphyria. Eur J Clin Invest. 1993;23(2):130-138.
47. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945-951.
48. Rufenacht UB, Gouya L, Schneider-Yin X, et al. Systematic analysis of molecular defects in the ferrochelatase gene from patients with erythropoietic protoporphyria. Am J Hum Genet. 1998;62(6):1341-1352.
49. Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-W303.
haematologica | 2019; 104(9)
1767


































































































   87   88   89   90   91