Page 51 - 2019_09-HaematologicaMondo-web
P. 51

Targeting sickle cell root-cause pathophysiology
LJ. Transcriptional activation of an embry- onic globin gene in adult erythroid cells in vivo. Prog Clin Biol Res. 1985;191:463-474.
66. Scuto A, Kirschbaum M, Kowolik C, et al. The novel histone deacetylase inhibitor, LBH589, induces expression of DNA dam- age response genes and apoptosis in Ph- acute lymphoblastic leukemia cells. Blood. 2008;111(10):5093-100.
67. Lee JH, Choy ML, Ngo L, Foster SS, Marks PA. Histone deacetylase inhibitor induces DNA damage, which normal but not trans- formed cells can repair. Proc Natl Acad Sci U S A. 2010;107(33):14639-14644.
68. Conti C, Leo E, Eichler GS, et al. Inhibition of histone deacetylase in cancer cells slows down replication forks, activates dormant origins, and induces DNA damage. Cancer Res. 2010;70(11):4470-4480.
69. Gaymes TJ, Padua RA, Pla M, et al. Histone deacetylase inhibitors (HDI) cause DNA damage in leukemia cells: a mechanism for leukemia-specific HDI-dependent apopto- sis? Mol Cancer Res. 2006;4(8):563-573.
70. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6(1):38-51.
71. Patthamalai P, Fuchareon S, Chaneiam N, et al. A phase 2 trial of HQK-1001 in HbE-beta thalassemia demonstrates HbF induction and reduced anemia. Blood. 2014;123(12): 1956-1957.
72. van der Ploeg LH, Flavell RA. DNA methyla- tion in the human gamma delta beta-globin locus in erythroid and nonerythroid tissues. Cell. 1980;19(4):947-958.
73. Mavilio F, Giampaolo A, Care A, et al. Molecular mechanisms of human hemoglo- bin switching: selective undermethylation and expression of globin genes in embryon- ic, fetal, and adult erythroblasts. Proc Natl Acad Sci U S A. 1983;80(22):6907-6911.
74. Tagle DA, Koop BF, Goodman M, et al. Embryonic epsilon and gamma globin genes of a prosimian primate (Galago crassicauda- tus). Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol. 1988;203(2):439-455.
75. DeSimone J, Heller P, Hall L, Zwiers D. 5- Azacytidine stimulates fetal hemoglobin synthesis in anemic baboons. Proc Natl Acad Sci U S A. 1982;79(14):4428-4431.
76. Ley TJ, DeSimone J, Anagnou NP, et al. 5- azacytidine selectively increases gamma- globin synthesis in a patient with beta+ tha- lassemia. N Engl J Med. 1982;307(24):1469- 1475.
77. Ley TJ, DeSimone J, Noguchi CT, et al. 5- Azacytidine increases gamma-globin syn- thesis and reduces the proportion of dense cells in patients with sickle cell anemia. Blood. 1983;62(2):370-380.
78. Charache S, Dover G, Smith K, et al. Treatment of sickle cell anemia with 5-aza- cytidine results in increased fetal hemoglo- bin production and is associated with non- random hypomethylation of DNA around the gamma-delta-beta-globin gene complex. Proc Natl Acad Sci U S A. 1983;80(15):4842- 4846.
79. Dover GJ, Charache S, Boyer SH, Vogelsang G, Moyer M. 5-Azacytidine increases HbF production and reduces anemia in sickle cell disease: dose-response analysis of subcuta- neous and oral dosage regimens. Blood. 1985;66(3):527-532.
80. Lowrey CH, Nienhuis AW. Brief report: treatment with azacitidine of patients with end-stage beta-thalassemia. N Engl J Med. 1993;329(12):845-848.
81. Koshy M, DeSimone J, Molokie R, et al. Augmentation of fetal hemoglobin (HbF) levels by low-dose short-duration 5 '-aza-2- deoxycytidine (decitabine) administration in sickle cell anemia patients who had no HbF elevation following hydroxyurea therapy. Blood. 1998;92(10):30b-b.
82. Cui S, Kolodziej KE, Obara N, et al. Nuclear receptors TR2 and TR4 recruit multiple epi- genetic transcriptional corepressors that associate specifically with the embryonic beta-type globin promoters in differentiated adult erythroid cells. Mol Cell Biol. 2011;31(16):3298-3311.
83. Santi DV, Garrett CE, Barr PJ. On the mech- anism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell. 1983;33(1):9-10.
84. Clements EG, Mohammad HP, Leadem BR, et al. DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modi- fying enzymes. Nucleic Acids Res. 2012;40(10):4334-4346.
85. Brenner C, Luciani J, Bizet M, et al. The interplay between the lysine demethylase KDM1A and DNA methyltransferases in cancer cells is cell cycle dependent. Oncotarget. 2016;7(37):58939-58952.
86. Covey JM, D'Incalci M, Tilchen EJ, Zaharko DS, Kohn KW. Differences in DNA damage produced by incorporation of 5-aza-2'- deoxycytidine or 5,6-dihydro-5-azacytidine into DNA of mammalian cells. Cancer Res. 1986;46(11):5511-5517.
87. Schermelleh L, Haemmer A, Spada F, et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methy- lation. Nucleic Acids Res. 2007;35(13):4301- 4312.
88. Zauri M, Berridge G, Thezenas ML, et al. CDA directs metabolism of epigenetic nucleosides revealing a therapeutic window in cancer. Nature. 2015;524(7563):114-118.
89. Almqvist H, Axelsson H, Jafari R, et al. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluo- rouracil. Nat Commun. 2016;7:11040.
90. Olivieri NF, Saunthararajah Y, Thayalasuthan V, et al. A pilot study of sub- cutaneous decitabine in beta-thalassemia intermedia. Blood. 2011;118(10):2708-2711.
91. Saunthararajah Y, Sekeres M, Advani A, et al. Evaluation of noncytotoxic DNMT1- depleting therapy in patients with myelodysplastic syndromes. J Clin Invest. 2015;125(3):1043-1055.
92. Milhem M, Mahmud N, Lavelle D, et al. Modification of hematopoietic stem cell fate by 5aza 2 ' deoxycytidine and trichostatin A. Blood. 2004;103(11):4102-4110.
93. Hu Z, Negrotto S, Gu X, et al. Decitabine maintains hematopoietic precursor self- renewal by preventing repression of stem cell genes by a differentiation-inducing stim- ulus. Mol Cancer Ther. 2010;9(6):1536-1543.
94. DeSimone J, Koshy M, Dorn L, et al. Maintenance of elevated fetal hemoglobin levels by decitabine during dose interval treatment of sickle cell anemia. Blood. 2002;99(11):3905-3908.
95. Molokie R, Lavelle D, Gowhari M, et al. Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: a randomized phase 1 study. PLoS Med. 2017;14(9):e1002382.
96. Santi DV, Norment A, Garrett CE. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-
azacytosine. Proc Natl Acad Sci USA. 1984;
81(22):6993-6997.
97. Patel K, Dickson J, Din S, et al. Targeting of
5-aza-2'-deoxycytidine residues by chro- matin-associated DNMT1 induces proteaso- mal degradation of the free enzyme. Nucleic Acids Res. 2010;38(13):4313-4324.
98. Creusot F, Acs G, Christman JK. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2'-deoxycyti- dine. J Biol Chem. 1982;257(4):2041-2048.
99. Shi L, Cui S, Engel JD, Tanabe O. Lysine-spe- cific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med. 2013;19(3):291-294.
100.Cui S, Lim KC, Shi L, et al. The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice. Blood. 2015;126(3):386- 396.
101. Jagadeeswaran R, Vazquez BA, Thiruppathi M, et al. Pharmacological inhibition of LSD1 and mTOR reduces mitochondrial retention and associated ROS levels in the red blood cells of sickle cell disease. Exp Hematol. 2017;50:46-52.
102.Rivers A, Vaitkus K, Ibanez V, et al. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis). Haematologica. 2016;101(6):688- 697.
103. Hartley PD, Madhani HD. Mechanisms that specify promoter nucleosome location and identity. Cell. 2009;137(3):445-458.
104. Parnell TJ, Huff JT, Cairns BR. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 2008;27(1):100-110.
105. Velcheti V, Schrump D, Saunthararajah Y. Ultimate precision: targeting cancer but not normal self-replication. Am Soc Clin Oncol Educ Book. 2018;38:950-963.
106. Kingsley PD, Malik J, Emerson RL, et al. "Maturational" globin switching in primary primitive erythroid cells. Blood. 2006;107 (4):1665-1672.
107. Mabaera R, Richardson CA, Johnson K, et al. Developmental- and differentiation-specific patterns of human gamma- and beta-globin promoter DNA methylation. Blood. 2007;110 (4):1343-1352.
108. McGrath K, Palis J. Ontogeny of erythro- poiesis in the mammalian embryo. Curr Top Dev Biol. 2008;82:1-22.
109. Ni H, Yang XD, Stoeckert CJ, Jr. Maturation and developmental stage-related changes in fetal globin gene expression are reproduced in transiently transfected primary adult human erythroblasts. Exp Hematol. 1999;27 (1):46-53.
110. Papayannopoulou TH, Brice M, Stamatoyannopoulos G. Stimulation of fetal hemoglobin synthesis in bone marrow cul- tures from adult individuals. Proc Natl Acad Sci U S A. 1976;73(6):2033-2037.
111. Velcheti V, Radivoyevitch T, Saunthararajah Y. Higher-level pathway objectives of epige- netic therapy: a solution to the p53 problem in cancer. Am Soc Clin Oncol Educ Book. 2017;37:812-824.
112. Saleh MFM, Saunthararajah Y. Severe pyo- derma gangrenosum caused by myelodys- plastic syndrome successfully treated with decitabine administered by a noncytotoxic regimen. Clin Case Rep. 2017;5(12):2025- 2027.
113. Liu Y, Tabarroki A, Billings S, et al. Successful use of very low dose subcuta- neous decitabine to treat high-risk myelofi- brosis with Sweet syndrome that was
haematologica | 2019; 104(9)
1729


































































































   49   50   51   52   53