Page 50 - 2019_09-HaematologicaMondo-web
P. 50

Y. Saunthararajah et al.
Shoup F. Natural history of sickle cell anemia in Saudi Arabs. A study of 270 subjects. Ann Intern Med. 1978;88(1):1-6.
12. Ngo DA, Aygun B, Akinsheye I, et al. Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin. Br J Haematol. 2012;156(2):259-264.
13. Platt OS, Thorington BD, Brambilla DJ, et al. Pain in sickle cell disease. Rates and risk fac- tors. N Engl J Med. 1991;325(1):11-16.
14. Powars DR, Weiss JN, Chan LS, Schroeder WA. Is there a threshold level of fetal hemo- globin that ameliorates morbidity in sickle cell anemia? Blood. 1984;63(4):921-926.
15. Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and mor- bidity in adult sickle cell anemia: risks and benefits up to 9 years of treatment. JAMA. 2003;289(13):1645-1651.
16. Atweh GF, Schechter AN. Pharmacologic induction of fetal hemoglobin: raising the therapeutic bar in sickle cell disease. Curr Opin Hematol. 2001;8(2):123-130.
17. Powars DR, Elliott-Mills DD, Chan L, et al. Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann Intern Med. 1991;115(8):614-620.
18. Lebensburger J, Johnson SM, Askenazi DJ, et al. Protective role of hemoglobin and fetal hemoglobin in early kidney disease for chil- dren with sickle cell anemia. Am J Hematol. 2011;86(5):430-432.
19. Aban I, Baddam S, Hilliard LM, et al. Severe anemia early in life as a risk factor for sickle- cell kidney disease. Blood. 2017;129(3):385- 387.
20. Akinsheye I, Alsultan A, Solovieff N, et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011;118(1):19-27.
21. Goldberg MA, Husson MA, Bunn HF. Participation of hemoglobins A and F in polymerization of sickle hemoglobin. J Biol Chem. 1977;252(10):3414-3421.
22. Nagel RL, Bookchin RM, Johnson J, et al. Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S. Proc Natl Acad Sci U S A. 1979;76(2):670-672.
23. Lavelle D, Engel JD, Saunthararajah Y. Fetal hemoglobin induction by epigenetic drugs. Semin Hematol. 2018;55(2):60-67.
24. DeSimone J, Biel SI, Heller P. Stimulation of fetal hemoglobin synthesis in baboons by hemolysis and hypoxia. Proc Natl Acad Sci U S A. 1978;75(6):2937-2940.
25. DeSimone J, Heller P, Adams JG. Hemopoietic stress and fetal hemoglobin synthesis: comparative studies in vivo and in vitro. Blood. 1979;54(5):1176-1181.
26. DeSimone J, Heller P, Amsel J, Usman M. Magnitude of the fetal hemoglobin response to acute hemolytic anemia in baboons is controlled by genetic factors. J Clin Invest. 1980;65(1):224-226.
27. DeSimone J, Heller P, Biel M, Zwiers D. Genetic relationship between fetal Hb levels in normal and erythropoietically stressed baboons. Br J Haematol. 1981;49(2):175-183.
28. DeSimone J, Biel M, Heller P. Maintenance of fetal hemoglobin (HbF) elevations in the baboon by prolonged erythropoietic stress. Blood. 1982;60(2):519-523.
29. Lavelle D, DeSimone J, Heller P, Zwiers D, Hall L. On the mechanism of Hb F eleva- tions in the baboon by erythropoietic stress and pharmacologic manipulation. Blood. 1986;67(4):1083-1089.
30. Charache S, Terrin ML, Moore RD, et al. Effect of hydroxyurea on the frequency of
painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995;332(20):1317-1322.
31. Steinberg MH, Lu ZH, Barton FB, et al. Fetal hemoglobin in sickle cell anemia: determi- nants of response to hydroxyurea. Multicenter Study of Hydroxyurea. Blood. 1997;89(3):1078-1088.
32. Ballas SK, Marcolina MJ, Dover GJ, Barton FB. Erythropoietic activity in patients with sickle cell anaemia before and after treat- ment with hydroxyurea. Br J Haematol. 1999;105(2):491-496.
33. Charache S, Dover GJ, Moore RD, et al. Hydroxyurea: effects on hemoglobin F pro- duction in patients with sickle cell anemia. Blood. 1992;79(10):2555-2565.
34. Ballas SK, Barton FB, Waclawiw MA, et al. Hydroxyurea and sickle cell anemia: effect on quality of life. Health Qual Life Outcomes. 2006;4:59.
35. Lebensburger JD, Pestina TI, Ware RE, Boyd KL, Persons DA. Hydroxyurea therapy requires HbF induction for clinical benefit in a sickle cell mouse model. Haematologica. 2010;95(9):1599-1603.
36. Segal JB, Strouse JJ, Beach MC, et al. Hydroxyurea for the treatment of sickle cell disease. Evid Rep Technol Assess. 2008;(165):1-95.
37. Machado RF, Anthi A, Steinberg MH, et al. N-terminal pro-brain natriuretic peptide lev- els and risk of death in sickle cell disease. JAMA. 2006;296(3):310-318.
38. Ware RE, Eggleston B, Redding-Lallinger R, et al. Predictors of fetal hemoglobin response in children with sickle cell anemia receiving hydroxyurea therapy. Blood. 2002;99(1):10-14.
39. Green NS, Manwani D, Qureshi M, et al. Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use. Pediatr Blood Cancer. 2016;63(12):2146-2153.
40. West MS, Wethers D, Smith J, Steinberg M. Laboratory profile of sickle cell disease: a cross-sectional analysis. The Cooperative Study of Sickle Cell Disease. J Clin Epidemiol. 1992;45(8):893-909.
41. Goren A, Simchen G, Fibach E, et al. Fine tuning of globin gene expression by DNA methylation. PLoS One. 2006;1:e46.
42. Platt OS, Orkin SH, Dover G, et al. Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia. J Clin Invest. 1984;74(2):652-656.
43. Saunthararajah Y, Hillery CA, Lavelle D, et al. Effects of 5-aza-2 '-deoxycytidine on fetal hemoglobin levels, red cell adhesion, and hematopoietic differentiation in patients with sickle cell disease. Blood. 2003;102(12):3865-3870.
44. Saunthararajah Y, Lavelle D, DeSimone J. DNA hypo-methylating agents and sickle cell disease. Br J Haematol. 2004;126(5):629- 636.
45. Sikorski TW, Joo YJ, Ficarro SB, et al. Proteomic analysis demonstrates activator- and chromatin-specific recruitment to pro- moters. J Biol Chem. 2012;287(42):35397- 35408.
46. Lemon B, Inouye C, King DS, Tjian R. Selectivity of chromatin-remodelling cofac- tors for ligand-activated transcription. Nature. 2001;414(6866):924-928.
47. Kadam S, Emerson BM. Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell. 2003;11(2):377-389.
48. Kadam S, McAlpine GS, Phelan ML, et al. Functional selectivity of recombinant mam- malian SWI/SNF subunits. Genes Dev. 2000;14(19):2441-2451.
49. Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839- 1842.
50. Tanabe O, Katsuoka F, Campbell AD, et al. An embryonic/fetal beta-type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J. 2002;21(13):3434-3442.
51. Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromo- some 2p15. Nat Genet. 2007;39(10):1197- 1199.
52. Cui S, Kolodziej KE, Obara N, et al. Nuclear receptors TR2 and TR4 recruit multiple epi- genetic transcriptional corepressors that associate specifically with the embryonic β- type globin promoters in differentiated adult erythroid cells. Mol Cell Biol. 2011;31(16): 3298-3311.
53. Xu J, Bauer DE, Kerenyi MA, et al. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci U S A. 2013;110(16):6518- 6523.
54. Liu X, Zhang Y, Chen Y, et al. In situ Capture of chromatin interactions by biotinylated dCas9. Cell. 2017;170(5):1028-1043.e19.
55. Constantoulakis P, Knitter G, Stamatoyannopoulos G. On the induction of fetal hemoglobin by butyrates: in vivo and in vitro studies with sodium butyrate and comparison of combination treatments with 5-AzaC and AraC. Blood. 1989;74(6):1963-1971.
56. Chaturvedi CP, Hosey AM, Palii C, et al. Dual role for the methyltransferase G9a in the maintenance of beta-globin gene tran- scription in adult erythroid cells. Proc Natl Acad Sci U S A. 2009;106(43):18303-18308.
57. Rank G, Cerruti L, Simpson RJ, et al. Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression. Blood. 2010;116(9):1585-1592.
58. XuZ,HeY,JuJ,etal.TheroleofWDR5in silencing human fetal globin gene expres- sion. Haematologica. 2012;97(11):1632- 1640.
59. Krivega I, Byrnes C, de Vasconcellos JF, et al. Inhibition of G9a methyltransferase stimu- lates fetal hemoglobin production by facili- tating LCR/gamma-globin looping. Blood. 2015;126(5):665-672.
60. Renneville A, Van Galen P, Canver MC, et al. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood. 2015;126(16):1930-1939.
61. Velcheti V, Wong KK, Saunthararajah Y. EZH2 inhibitors: take it EZy, it is all about context. Cancer Discov. 2019;9(4):472-475.
62. Wang X, Thein SL. Switching from fetal to adult hemoglobin. Nat Genet. 2018;50(4): 478-480.
63. Martyn GE, Wienert B, Yang L, et al. Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding. Nat Genet. 2018;50(4):498-503.
64. Uda M, Galanello R, Sanna S, et al. Genome- wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta- thalassemia. Proc Natl Acad Sci U S A. 2008;105(5):1620-1625.
65. Ginder GD, Whitters MJ, Pohlman JK, Burns
1728
haematologica | 2019; 104(9)


































































































   48   49   50   51   52