Page 226 - 2019_09-HaematologicaMondo-web
P. 226

P.J. Noy et al.
Funding
This work was funded by a British Heart Foundation Project Grant (PG/13/92/30587) which supported PJN, Biotechnology and Biological Sciences Research Council PhD Studentships which supported RLG and EJH, British Heart Foundation PhD Studentships which supported DC, JSR and CZK (FS/05/048,
Foundation Senior Fellowship (FS/08/062/25797) to MGT which also supported JY, a Biotechnology and Biological Sciences Research Council Project Grant (BB/P00783X/1) which supported NH and a Medical Research Council New Investigator Award (RRAK10717) which supported MGT. SPW is a British Heart Foundation Chair (CH03/003).
FS/12/79/29871 and FS/18/9/33388), a
British Heart
Mice. Circ Res. 2017;121(8):941-950.
von Bruhl ML, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets coop- erate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012;209(4):819-835.
Tang T, Li L, Tang J, et al. A mouse knockout library for secreted and transmembrane pro- teins. Nat Biotechnol. 2010;28(7):749-755. Hughes CE, Navarro-Nunez L, Finney BA, Mourao-Sa D, Pollitt AY, Watson SP. CLEC- 2 is not required for platelet aggregation at arteriolar shear. J Thromb Haemost. 2010;8(10):2328-2332.
Shapiro VS, Truitt KE, Imboden JB, Weiss A. CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol Cell Biol. 1997;17(7):4051-4058.
Tomlinson MG, Calaminus SD, Berlanga O, et al. Collagen promotes sustained glycopro- tein VI signaling in platelets and cell lines. J Thromb Haemost. 2007;5(11):2274-2283. Haining EJ, Yang J, Bailey RL, et al. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J Biol Chem. 2012;287(47):39753-39765.
Protty MB, Watkins NA, Colombo D, et al. Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochem J. 2009;417(1):391-400.
Gwack Y, Srikanth S, Feske S, et al. Biochemical and functional characterization of Orai proteins. J Biol Chem. 2007;282(22):16232-16243.
O'Keefe SJ, Tamura J, Kincaid RL, Tocci MJ, O'Neill EA. FK-506- and CsA-sensitive acti- vation of the interleukin-2 promoter by cal- cineurin. Nature. 1992;357(6380):692-694. Sugawara H, Kurosaki M, Takata M, Kurosaki T. Genetic evidence for involve- ment of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal trans- duction through the B-cell antigen receptor. Embo J. 1997;16(11):3078-3088.
Ehrhardt C, Schmolke M, Matzke A, et al. Polyethylenimine, a cost-effective transfec- tion reagent. Signal Transduction. 2006;6:179–184.
Noy PJ, Yang J, Reyat JS, et al. TspanC8 Tetraspanins and A Disintegrin and Metalloprotease 10 (ADAM10) Interact via Their Extracellular Regions: EVIDENCE FOR DISTINCT BINDING MECHANISMS FOR DIFFERENT TspanC8 PROTEINS. J Biol Chem. 2016;291(7):3145-3157.
Wilson E, Leszczynska K, Poulter NS, et al. RhoJ interacts with the GIT-PIX complex and regulates focal adhesion disassembly. J Cell Sci. 2014;127(Pt 14):3039-3051.
Pfaffl MW. A new mathematical model for
References
1. Matthews AL, Szyroka J, Collier R, Noy PJ, Tomlinson MG. Scissor sisters: regulation of ADAM10 by the TspanC8 tetraspanins. Biochem Soc Trans. 2017;45(3):719-730.
2. Termini CM, Gillette JM. Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol. 2017;5:34.
3. vanDeventerSJ,DunlockVE,vanSprielAB. Molecular interactions shaping the tetraspanin web. Biochem Soc Trans. 2017;45(3):741-750.
4. Zimmerman B, Kelly B, McMillan BJ, et al. Crystal Structure of a Full-Length Human Tetraspanin Reveals a Cholesterol-Binding Pocket. Cell. 2016;167(4):1041-1051.
5. Fairchild CL, Conway JP, Schiffmacher AT, Taneyhill LA, Gammill LS. FoxD3 regulates cranial neural crest EMT via downregulation of tetraspanin18 independent of its func- tions during neural crest formation. Mech Dev. 2014;132:1-12.
6. FairchildCL,GammillLS.Tetraspanin18isa FoxD3-responsive antagonist of cranial neu- ral crest epithelial-to-mesenchymal transi- tion that maintains cadherin-6B protein. J Cell Sci. 2013;126(Pt 6):1464-1476.
7. Putney JW, Steinckwich-Besancon N, Numaga-Tomita T, et al. The functions of store-operated calcium channels. Biochim Biophys Acta. 2017;1864(6):900-906.
8. Trebak M, Putney JW Jr. ORAI Calcium Channels. Physiology (Bethesda). 2017; 32(4):332-342.
9. Yeung PS, Yamashita M, Prakriya M. Pore opening mechanism of CRAC channels. Cell Calcium. 2017;63:14-19.
10. ZhouY,CaiX,NwokonkoRM,Loktionova NA, Wang Y, Gill DL. The STIM-Orai cou- pling interface and gating of the Orai1 chan- nel. Cell Calcium. 2017;63:8-13.
11. Gragnano F, Sperlongano S, Golia E, et al. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. Mediators Inflamm. 2017;2017:5620314.
12. Kawecki C, Lenting PJ, Denis CV. von Willebrand factor and inflammation. J Thromb Haemost. 2017;15(7):1285-1294.
13. Brill A, Fuchs TA, Chauhan AK, et al. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood. 2011;117(4):1400-1407.
14. McCormack JJ, Lopes da Silva M, Ferraro F, Patella F, Cutler DF. Weibel-Palade bodies at a glance. J Cell Sci. 2017;130(21):3611-3617.
15. Brill A, Fuchs TA, Savchenko AS, et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136-144.
16. Ponomaryov T, Payne H, Fabritz L, Wagner DD, Brill A. Mast Cells Granular Contents Are Crucial for Deep Vein Thrombosis in
17.
18. 19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
relative quantification in real-time RT-PCR.
Nucleic Acids Res. 2001;29(9):e45.
31. Reyat JS, Tomlinson MG, Noy PJ. Utilizing Lentiviral Gene Transfer in Primary Endothelial Cells to Assess Lymphocyte- Endothelial Interactions. Methods Mol Biol.
2017;1591:155-168.
32. Manders EMM, Verbeek FJ, Aten JA.
Measurement of Colocalization of Objects in Dual-Color Confocal Images. J Microsc- Oxford. 1993;169:375-382.
33. Gardenier JC, Hespe GE, Kataru RP, et al. Diphtheria toxin-mediated ablation of lym- phatic endothelial cells results in progressive lymphedema. JCI Insight. 2016;1(15): e84095.
34. Simms V, Bicknell R, Heath VL. Development of an ImageJ-based method for analysing the developing zebrafish vas- culature. Vascular Cell. 2017;9(1):2.
35. Parsonage G, Machado LR, Hui JW, et al. CXCR6 and CCR5 localize T lymphocyte subsets in nasopharyngeal carcinoma. Am J Pathol. 2012;180(3):1215-1222.
36. Pollitt AY, Poulter NS, Gitz E, et al. Syk and Src family kinases regulate C-type lectin receptor 2 (CLEC-2)-mediated clustering of podoplanin and platelet adhesion to lym- phatic endothelial cells. J Biol Chem. 2014;289(52):35695-35710.
37. Senis YA, Tomlinson MG, Ellison S, et al. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activa- tion and thrombosis. Blood. 2009;113:4942- 4954.
38. Braun A, Varga-Szabo D, Kleinschnitz C, et al. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood. 2009; 113(9):2056-2063.
39. Xu Z, Alloush J, Beck E, Weisleder N. A murine model of myocardial ischemia-reper- fusion injury through ligation of the left anterior descending artery. J Vis Exp. 2014(86).
40. Du Y, Kitzmiller JA, Sridharan A, et al. Lung Gene Expression Analysis (LGEA): an inte- grative web portal for comprehensive gene expression data analysis in lung develop- ment. Thorax. 2017;72(5):481-484.
41. Zhang Y, Chen K, Sloan SA, et al. An RNA- sequencing transcriptome and splicing data- base of glia, neurons, and vascular cells of the cerebral cortex. The Journal of neuro- science : the official journal of the Society for Neuroscience. 2014;34(36):11929-11947.
42. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.
43. Fuller GL, Williams JA, Tomlinson MG, et al. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem. 2007;282(17):12397-12409.
44. Prakriya M, Feske S, Gwack Y, Srikanth S,
1904
haematologica | 2019; 104(9)


































































































   224   225   226   227   228