Page 151 - 2019_09-HaematologicaMondo-web
P. 151

Burkitt-like lymphoma with 11q aberration
The copy-number data reported in this article have been deposited at the GEO database under accession number GSE116527. Sequencing data have been deposited at the European Nucleotide Archive (ENA, accession number ERP110085).
Acknowledgments
We thank the centers of the Sociedad Española de
Hematología y Oncología Pediátricas that submitted cases for consultation and Noelia Garcia, Silvia Martín, and Helena Suarez for their excellent technical assistance. We are indebted to the IDIBAPS Genomics Core Facility and to HCB-IDIBAPS Biobank-Tumor Bank and Biobanc de l’HospitaI Infantil Sant Joan de Déu, both integrated in the National Network Biobanks of ISCIII for the sample and data procurement. We thank Prof. Reiner Siebert from the University of Ulm for sharing the 11q
References
1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (Eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. (Revised 4th edition) IARC: Lyon 2017.
2. Schmidt J, Gong S, Marafioti T, et al. Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood. 2016;128(8):1101- 1111.
3. Salaverria I, Philipp C, Oschlies I, et al. Translocations activating IRF4 identify a subtype of germinal center-derived B-cell lymphoma affecting predominantly chil- dren and young adults. Blood. 2011;118(1):139-147.
4. Salaverria I, Martin-Guerrero I, Wagener R, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood. 2014;123(8): 1187-1198.
5. Rymkiewicz G, Grygalewicz B, Chechlinska M, et al. A comprehensive flow-cytometry-based immunophenotypic characterization of Burkitt-like lymphoma with 11q aberration. Mod Pathol. 2018;31(5):732-743.
6. Ferreiro JF, Morscio J, Dierickx D, et al. Post-transplant molecularly defined Burkitt lymphomas are frequently MYC-negative and characterized by the 11q-gain/loss pat- tern. Haematologica. 2015;100(7):e275- e279.
7. Capello D, Scandurra M, Poretti G, et al. Genome wide DNA-profiling of HIV-relat- ed B-cell lymphomas. Br J Haematol. 2010;148(2):245-255.
8. Deffenbacher KE, Iqbal J, Liu Z, Fu K, Chan WC. Recurrent chromosomal alterations in molecularly classified AIDS-related lym- phomas: an integrated analysis of DNA copy number and gene expression. J Acquir Immune Defic Syndr. 2010;54(1):18-26.
9. Poirel HA, Cairo MS, Heerema NA, et al. Specific cytogenetic abnormalities are asso- ciated with a significantly inferior outcome in children and adolescents with mature B- cell non-Hodgkin's lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323-331.
10. Havelange V, Ameye G, Theate I, et al. The peculiar 11q-gain/loss aberration reported in a subset of MYC-negative high-grade B-
cell lymphomas can also occur in a MYC- rearranged lymphoma. Cancer Genet. 2016;209(3):117-118.
11. Grygalewicz B, Woroniecka R, Rymkiewicz G, et al. The 11q-gain/loss aberration occurs recurrently in MYC-neg- ative Burkitt-like lymphoma with 11q aber- ration, as well as MYC-positive Burkitt lymphoma and MYC-positive high-grade B-cell lymphoma, NOS. Am J Clin Pathol. 2017;149(1):17-28.
12. Dunleavy K, Gross TG. Management of aggressive B-cell NHLs in the AYA popula- tion: an adult vs pediatric perspective. Blood. 2018;132(4):369-375.
13. Karube K, Enjuanes A, Dlouhy I, et al. Integrating genomic alterations in diffuse large B-cell lymphoma identifies new rele- vant pathways and potential therapeutic targets. Leukemia. 2018;32(3):675-684.
14. Richter J, Schlesner M, Hoffmann S, et al. Recurrent mutation of the ID3 gene in Burkitt lymphoma identified by integrated genome, exome and transcriptome sequencing. Nat Genet. 2012;44(12):1316- 1320.
15. Schmitz R, Young RM, Ceribelli M, et al. Burkitt lymphoma pathogenesis and thera- peutic targets from structural and function- al genomics. Nature. 2012;490(7418):116- 120.
16. Love C, Sun Z, Jima D, et al. The genetic landscape of mutations in Burkitt lym- phoma. Nat Genet. 2012;44(12):1321-1325.
17. Morin RD, Mungall K, Pleasance E, et al. Mutational and structural analysis of dif- fuse large B-cell lymphoma using whole- genome sequencing. Blood. 2013;122(7): 1256-1265.
18. Colomo L, Vazquez I, Papaleo N, et al. LMO2-negative expression predicts the presence of MYC translocations in aggres- sive B-cell lymphomas. Am J Surg Pathol. 2017;41(7):877-886.
19. Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3452-3459.
20. Scholtysik R, Kreuz M, Klapper W, et al. Detection of genomic aberrations in molec- ularly defined Burkitt's lymphoma by array-based, high resolution, single nucleotide polymorphism analysis. Haematologica. 2010;95(12):2047-2055.
21. Scott DW, Wright GW, Williams PM, et al. Determining cell-of-origin subtypes of dif-
fuse large B-cell lymphoma using gene expression in formalin-fixed paraffin- embedded tissue. Blood. 2014;123(8):1214- 1217.
22. Bouska A, McKeithan TW, Deffenbacher KE, et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood. 2014;123(11):1681- 1690.
23. Guardavaccaro D, Corrente G, Covone F, et al. Arrest of G(1)-S progression by the p53- inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 tran- scription. Mol Cell Biol. 2000;20(5):1797- 1815.
24. Bahram F, von der LN, Cetinkaya C, Larsson LG. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitina- tion and decreased proteasome-mediated turnover. Blood. 2000;95(6):2104-2110.
25. Evrard SM, Pericart S, Grand D, et al. Targeted next generation sequencing reveals high mutation frequency of CREBBP, BCL2 and KMT2D in high-grade B-cell lymphoma with MYC and BCL2 and /or BCL6 rearrangements. Haematologica. 2019;104(4):e154-e157.
26. Momose S, Weissbach S, Pischimarov J, et al. The diagnostic gray zone between Burkitt lymphoma and diffuse large B-cell lymphoma is also a gray zone of the muta- tional spectrum. Leukemia. 2015;29(8): 1789-1791.
27. Wagener R, Seufert J, Raimondi F, et al. The mutational landscape of Burkitt-like lym- phoma with 11q aberration is distinct from that of Burkitt lymphoma. Blood. 2019;133 (9):962-966.
28. King RL, McPhail ED, Meyer RG, et al. False-negative rates for MYC FISH probes in B-cell neoplasms. Haematologica. 2019; 104(6):e248-e251.
29. Bonetti P, Testoni M, Scandurra M, et al. Deregulation of ETS1 and FLI1 contributes to the pathogenesis of diffuse large B-cell lymphoma. Blood. 2013;122(13):2233-2241.
30. Rinaldi A, Kwee I, Poretti G, et al. Comparative genome-wide profiling of post-transplant lymphoproliferative disor- ders and diffuse large B-cell lymphomas. Br J Haematol. 2006;134(1):27-36.
31. Rinaldi A, Capello D, Scandurra M, et al. Single nucleotide polymorphism-arrays provide new insights in the pathogenesis of post-transplant diffuse large B-cell lym- phoma. Br J Haematol. 2010;149(4):569- 577.
haematologica | 2019; 104(9)
1829


































































































   149   150   151   152   153