Page 133 - 2019_09-HaematologicaMondo-web
P. 133

Glucocorticoids and selumetinib in RAS pathway-mutated ALL
References
1. Vora A, Goulden N, Mitchell C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15(8):809-818.
2. Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual dis- ease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2013;14(3):199-209.
3. Parker C, Waters R, Leighton C, et al. Effect of mitoxantrone on outcome of children with first relapse of acute lymphoblastic leukaemia (ALL R3): an open-label randomised trial. Lancet. 2010;376(9757):2009-2017.
4. Hof J, Krentz S, van Schewick C, et al. Mutations and deletions of the TP53 gene predict nonresponse to treatment and poor outcome in first relapse of childhood acute lymphoblastic leukemia. J Clin Oncol. 2011;29(23):3185-3193.
5. Malempati S, Gaynon PS, Sather H, La MK, Stork LC, Children's Oncology Group. Outcome after relapse among children with standard-risk acute lymphoblastic leukemia: Children's Oncology Group study CCG- 1952. J Clin Oncol. 2007;25(36):5800-5807.
6. Irving J, Matheson E, Minto L, et al. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 2014;124(23):3420-3430.
7. Moorman AV, Irving J, Enshaei A, et al. Composite index for risk prediction in relapsed childhood acute lymphoblastic Leukaemia. Haematologica. 2015;100(s1): 195-196.
8. Case M, Matheson E, Minto L, et al. Mutation of genes affecting the RAS path- way is common in childhood acute lym- phoblastic leukemia. Cancer Res. 2008;68 (16):6803-6809.
9. Chung E, Kondo M. Role of Ras/Raf/MEK/ERK signaling in physiologi- cal hematopoiesis and leukemia develop- ment. Immunol Res. 2011;49(1-3):248-268.
10. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761-774.
11. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. Regulating the regulator: post-transla- tional modification of RAS. Nat Rev Mol Cell Biol. 2012;13(1):39-51.
12. Ward AF, Braun BS, Shannon KM. Targeting oncogenic Ras signaling in hematologic malignancies. Blood. 2012;120(17):3397- 3406.
13. Knight T, Irving JA. Ras/Raf/MEK/ERK Pathway activation in childhood acute lym- phoblastic leukemia and its therapeutic tar- geting. Front Oncol. 2014; 4:160.
14. Balmanno K, Cook SJ. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ. 2009;16(3):368-377.
15. Ley R, Ewings KE, Hadfield K, Cook SJ. Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ. 2005;12(8):1008-1014.
16. Meng J, Fang B, Liao Y, Chresta CM, Smith PD, Roth JA. Apoptosis induction by MEK inhibition in human lung cancer cells is medi-
ated by Bim. PLoS One. 2010;5(9):e13026. 17. Hongo T, Fujii Y. In vitro chemosensitivity of lymphoblasts at relapse in childhood leukemia using the MTT assay. Int J
Hematol. 1991;54(3):219-230.
18. Klumper E, Pieters R, Veerman AJ, et al. In
vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood. 1995;86(10):3861-3868.
19. Lu J, Quearry B, Harada H. p38-MAP kinase activation followed by BIM induction is essential for glucocorticoid-induced apopto- sis in lymphoblastic leukemia cells. FEBS Lett. 2006;580(14):3539-3544.
20. Rambal AA, Panaguiton ZL, Kramer L, Grant S, Harada H. MEK inhibitors potenti- ate dexamethasone lethality in acute lym- phoblastic leukemia cells through the pro- apoptotic molecule BIM. Leukemia. 2009;23(10):1744-1754.
21. Polak A, Kiliszek P, Sewastianik T, et al. MEK inhibition sensitizes precursor B-cell acute lymphoblastic leukemia (B-ALL) cells to dexamethasone through modulation of mTOR activity and stimulation of autophagy. PLoS One. 2016;11(5):e0155893.
22. Jones CL, Gearheart CM, Fosmire S, et al. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood. 2015;126(19): 2202-2212.
23. Nicholson L, Knight T, Matheson E, et al. Casitas B lymphoma mutations in child- hood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2012;51(3):250- 256.
24. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27- 55.
25. Xu J, Knox JJ, Ibrahimov E, et al. Sequence dependence of MEK inhibitor AZD6244 combined with gemcitabine for the treat- ment of biliary cancer. Clin Cancer Res. 2013;19(1):118-127.
26. Yang L, Panetta JC, Cai X, et al. Asparaginase may influence dexamethasone pharmacoki- netics in acute lymphoblastic leukemia. J Clin Oncol. 2008;26(12):1932-1939.
27. Jackson RK, Irving JAE, Veal GJ. Pharmacokinetics of standard versus short high-dose dexamethasone therapy in child- hood acute lymphoblastic leukemia: results from the UKALL 2011 trial. Cancer Res. 2016;76(14 Suppl):CT115.
28. Bennouna J, Lang I, Valladares-Ayerbes M, et al. A phase II, open-label, randomised study to assess the efficacy and safety of the MEK1/2 inhibitor AZD6244 (ARRY-142886) versus capecitabine monotherapy in patients with colorectal cancer who have failed one or two prior chemotherapeutic regimens. Invest New Drugs. 2011;29(5):1021-1028.
29. Davies BR, Logie A, McKay JS, et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extra- cellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, phar- macokinetic/pharmacodynamic relation- ship, and potential for combination in pre- clinical models. Mol Cancer Ther. 2007;6 (8):2209-2219.
30. Janne PA, Shaw AT, Pereira JR, et al. Selumetinib plus docetaxel for KRAS- mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-con-
trolled, phase 2 study. Lancet Oncol.
2013;14(1):38-47.
31. Banerjee A, Jakacki R, Onar-Thomas A, et al.
A phase 1 study of AZD6244 in children with recurrent or refractory low-grade gliomas: a Pediatric Brain Tumor Consortium report. J Clin Oncol. 2014;32(5s):10065.
32. Dombi E, Baldwin A, Marcus LJ, et al. Activity of selumetinib in neurofibromatosis type 1-related plexiform neurofibromas. N Engl J Med. 2016;375(26):2550-2560.
33. Website-https://clinicaltrials.gov/.
34. Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW. MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol.
Oncogene. 2004;23(31):5301-5315.
35. Bachmann PS, Piazza RG, Janes ME, et al. Epigenetic silencing of BIM in glucocorticoid poor-responsive pediatric acute lymphoblas- tic leukemia, and its reversal by histone deacetylase inhibition. Blood. 2010;116(16):
3013-3022.
36. Engelman JA, Chen L, Tan X, et al. Effective
use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med. 2008;14 (12):1351-1356.
37. Haagensen EJ, Kyle S, Beale GS, Maxwell RJ, Newell DR. The synergistic interaction of MEK and PI3K inhibitors is modulated by mTOR inhibition. Br J Cancer. 2012;106(8): 1386-1394.
38. Corcoran RB, Cheng KA, Hata AN, et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell. 2013;23(1):121-128.
39. Krishnan S, Wade R, Moorman AV, et al. Temporal changes in the incidence and pat- tern of central nervous system relapses in children with acute lymphoblastic leukaemia treated on four consecutive Medical Research Council trials, 1985-2001. Leukemia. 2010;24(2):450-459.
40. Molteni CG, Te Kronnie G, Bicciato S, et al. PTPN11 mutations in childhood acute lym- phoblastic leukemia occur as a secondary event associated with high hyperdiploidy. Leukemia. 2010;24(1):232-235.
41. Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lym- phoblastic leukaemia. Nature. 2011;471 (7337):235-239.
42. Ma X, Edmonson M, Yergeau D, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun. 2015;6:6604.
43. Tartaglia M, Martinelli S, Cazzaniga G, et al. Genetic evidence for lineage-related and dif- ferentiation stage-related contribution of somatic PTPN11 mutations to leukemogen- esis in childhood acute leukemia. Blood. 2004;104(2):307-313.
44. Trinquand A, Tanguy-Schmidt A, Ben Abdelali R, et al. Toward a NOTCH1/FBXW7/RAS/PTEN-based onco- genetic risk classification of adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. J Clin Oncol. 2013;31 (34):4333-4342.
45. Welsh SJ, Corrie PG. Management of BRAF and MEK inhibitor toxicities in patients with metastatic melanoma. Ther Adv Med Oncol. 2015;7(2):122-136.
haematologica | 2019; 104(9)
1811


































































































   131   132   133   134   135