Page 119 - 2019_09-HaematologicaMondo-web
P. 119

UBE2A somatic variants in CML progression
Acknowledgments
The authors would like to thank Manuela Carrera and Giuliana Laurenza for technical assistance.
Funding
This work was supported by Associazione Italiana Ricerca sul Cancro (IG-14249 to CGP, IG-17727 to RP, IG-22082 to
RP), by the European Union’s Horizon 2020 Marie Skłodowska-Curie Innovative Training Networks (ITN-ETN) with grant agreement No.: 675712CGP and by Giovani Ricercatori #GR-2011-02351167 to AM. CGP is a member of the European Research Initiative for ALK-Related Malignancies (www.erialcl.net). JB acknowledges support from Bloodwise-UK.
References
1. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph' translo- cation. Nature. 1985;315(6022):758-761.
2. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247(4944):824-830.
3. Gambacorti-Passerini C, Antolini L, Mahon FX, et al. Multicenter independent assess- ment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst. 2011;103(7):553-561.
4. Hochhaus A, Larson RA, Guilhot F, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017;376(10):917-927.
5. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120(7):2254-2264.
6. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L. Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-pos- itive leukaemias. Lancet Oncol. 2003;4(2):75-85.
7. Grossmann V, Kohlmann A, Zenger M, et al. A deep-sequencing study of chronic myeloid leukemia patients in blast crisis (BC-CML) detects mutations in 76.9% of cases. Leukemia. 2011;25(3):557-560.
8. Boultwood J, Perry J, Zaman R, et al. High- density single nucleotide polymorphism array analysis and ASXL1 gene mutation screening in chronic myeloid leukemia dur- ing disease progression. Leukemia. 2010;24(6):1139-1145.
9. Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolu- tion of chronic myeloid leukemia. Acta Haematol. 2002;107(2):76-94.
10. Kantarjian HM, Keating MJ, Talpaz M, et al. Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med. 1987;83(3):445-454.
11. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the path- ogenicity of genetic variants. Bioinformatics. 2015;31(5):761-763.
12. Marega M, Piazza RG, Pirola A, et al. BCR and BCR-ABL regulation during myeloid differentiation in healthy donors and in chronic phase/blast crisis CML patients. Leukemia. 2010;24(8):1445-1449.
13. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros.
Nature. 2008;453(7191):110-114.
14. Puttini M, Coluccia AM, Boschelli F, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib- resistant Bcr-Abl+ neoplastic cells. Cancer
Res. 2006;66(23):11314-11322.
15. Piazza RG, Magistroni V, Gasser M, et al.
1980;287(5782):560-561.
27. Stoklosa T, Poplawski T, Koptyra M, et al.
BCR/ABL inhibits mismatch repair to pro- tect from apoptosis and induce point muta- tions. Cancer Res. 2008;68(8):2576-2580.
28. Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recur- rent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101-
Evidence for D276G and L364I Bcr-Abl
mutations in Ph+ leukaemic cells obtained
from patients resistant to Imatinib. 105.
Leukemia. 2005;19(1):132-134.
16. Vardiman JW, Thiele J, Arber DA, et al. The
2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937-951.
17. Piazza R, Valletta S, Winkelmann N, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45(1):18-24.
18. Schuster C, Forster K, Dierks H, et al. The effects of Bcr-Abl on C/EBP transcription- factor regulation and neutrophilic differen- tiation are reversed by the Abl kinase inhibitor imatinib mesylate. Blood. 2003;101(2):655-663.
19. de Miranda NF, Georgiou K, Chen L, et al. Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients. Blood. 2014;124(16):2544-2553.
20. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30(17):3894-3900.
21. Shihab HA, Rogers MF, Gough J, et al. An integrative approach to predicting the func- tional effects of non-coding and coding sequence variation. Bioinformatics. 2015;31(10):1536-1543.
22. Sung P, Prakash S, Prakash L. The RAD6 protein of Saccharomyces cerevisiae polyu- biquitinates histones, and its acidic domain mediates this activity. Genes Dev. 1988;2(11):1476-1485.
23. Kim KW, Kim SH, Lee EY, et al. Extracellular signal-regulated kinase/90- KDA ribosomal S6 kinase/nuclear factor- kappa B pathway mediates phorbol 12- myristate 13-acetate-induced megakary- ocytic differentiation of K562 cells. J Biol Chem. 2001;276(16):13186-13191.
24. Park JI, Choi HS, Jeong JS, Han JY, Kim IH. Involvement of p38 kinase in hydroxyurea- induced differentiation of K562 cells. Cell Growth Differ. 2001;12(9):481-486.
25. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013; 339(6127):1546-1558.
26. Duncan BK, Miller JH. Mutagenic deamina- tion of cytosine residues in DNA. Nature.
29. Shekhar MP, Lyakhovich A, Visscher DW, Heng H, Kondrat N. Rad6 overexpression induces multinucleation, centrosome amplification, abnormal mitosis, aneu- ploidy, and transformation. Cancer Res. 2002;62(7):2115-2124.
30. Roest HP, Baarends WM, de Wit J, et al. The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol Cell Biol. 2004;24(12):5485-5495.
31. Haddad DM, Vilain S, Vos M, et al. Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy. Mol Cell. 2013;50(6):831-843.
32. Budny B, Badura-Stronka M, Materna- Kiryluk A, et al. Novel missense mutations in the ubiquitination-related gene UBE2A cause a recognizable X-linked mental retar- dation syndrome. Clin Genet. 2010;77 (6):541-551.
33. Nascimento RM, Otto PA, de Brouwer AP, Vianna-Morgante AM. UBE2A, which encodes a ubiquitin-conjugating enzyme, is mutated in a novel X-linked mental retar- dation syndrome. Am J Hum Genet. 2006;79(3):549-555.
34. Yang FC, Tsuji K, Oda A, et al. Differential effects of human granulocyte colony-stim- ulating factor (hG-CSF) and thrombopoi- etin on megakaryopoiesis and platelet func- tion in hG-CSF receptor-transgenic mice. Blood. 1999;94(3):950-958.
35. Cosman D. The hematopoietin receptor superfamily. Cytokine. 1993;5(2):95-106.
36. Kim J, Guermah M, McGinty RK, et al. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell. 2009;137(3):459-471.
37. Wu J, Huen MS, Lu LY, et al. Histone ubiq- uitination associates with BRCA1-depen- dent DNA damage response. Mol Cell Biol. 2009;29(3):849-860.
38. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675.
39. Piazza R, Ramazzotti D, Spinelli R, et al. OncoScore: a novel, Internet-based tool to assess the oncogenic potential of genes. Sci Rep. 2017;7(7):46290.
haematologica | 2019; 104(9)
1797


































































































   117   118   119   120   121