Page 87 - 2019_08-Haematologica-web
P. 87

ZFP36L1 enhancer DNA methylation in MF
ic and transformed classic Philadelphia-neg- ative myeloproliferative neoplasms. Haematologica. 2013;98(9):1414-1420.
9. Mendizabal I, Yi SV. Whole-genome bisul- fite sequencing maps from multiple human tissues reveal novel CpG islands associated with tissue-specific regulation. Hum Mol Genet. 2016;25(1):69-82.
10. Deaton AM, Webb S, Kerr ARW, et al. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 2011;21(7):1074-1086.
11. Sandoval J, Heyn H, Moran S, et al. Validation of a DNA methylation microar- ray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6(6):692-702.
12. Rönnerblad M, Andersson R, Olofsson T, et al. Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. Blood. 2014;123(17):e79-e89.
13. Agirre X, Castellano G, Pascual M, et al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res. 2015;25(4):478-487.
14. Bell RE, Golan T, Sheinboim D, et al. Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res. 2016;26(5):601-611.
15. Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473(7345):43-49.
16. Wijetunga NA, Delahaye F, Zhao YM, et al. The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences. Nat Commun. 2014;5:5195.
17. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, et al. Immunogenetics. Chromatin state dynamics during blood formation. Science. 2014;345(6199):943-949.
18. Tefferi A, Thiele J, Vardiman JW. The 2008 World Health Organization classification system for myeloproliferative neoplasms. Cancer. 2009;115(17):3842-3847.
19. Kulis M, Merkel A, Heath S, et al. Whole- genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet. 2015;47(7):746-756.
20. Mi H, Huang X, Muruganujan A, et al. PAN- THER version 11: expanded annotation data from Gene Ontology and Reactome path- ways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45(D1):D183-D189.
21. Skov V, Larsen TS, Thomassen M, et al. Whole-blood transcriptional profiling of interferon-inducible genes identifies highly
upregulated IFI27 in primary myelofibrosis.
Eur J Haematol. 2011;87(1):54-60.
22. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015;43(7):e47-e47.
23. Klug M, Rehli M. Functional analysis of pro- moter CpG methylation using a CpG-free luciferase reporter vector. Epigenetics.
2006;1(3):127-130.
24. Bailey TL. DREME: motif discovery in tran-
scription factor ChIP-seq data.
Bioinformatics. 2011;27(12):1653-1659.
25. Hotta A, Cheung AYL, Farra N, et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency.
Nat Methods. 2009;6(5):370-376.
26. Qu Y, Siggens L, Cordeddu L, et al. Cancer- specific changes in DNA methylation reveal aberrant silencing and activation of enhancers in leukemia. Blood. 2017;129(7):
e13-e25.
27. Kulis M, Heath S, Bibikova M, et al.
Epigenomic analysis detects widespread gene-body DNA hypomethylation in chron- ic lymphocytic leukemia. Nat Genet. 2012;44(11):1236-1242.
28. Hitti E, Bakheet T, Al-Souhibani N, et al. Systematic analysis of AU-rich element expression in cancer reveals common func- tional clusters regulated by key RNA-bind- ing proteins. Cancer Res. May 2016.
29. Baou M, Norton JD, Murphy JJ. AU-rich RNA binding proteins in hematopoiesis and leukemogenesis. Blood. 2011;118(22):5732- 5740.
30. Gruber AR, Fallmann J, Kratochvill F, Kovarik P, Hofacker IL. AREsite: a database for the comprehensive investigation of AU- rich elements. Nucleic Acids Res. 2011;39(Database issue):D66-D69.
31. Reilly JT, McMullin MF, Beer PA, et al. Use of JAK inhibitors in the management of myelofibrosis: a revision of the British Committee for Standards in Haematology Guidelines for Investigation and Management of Myelofibrosis 2012. Br J Haematol. 2014;167(3):418-420.
32. Hernández-Boluda J-C, Pereira A, Gómez M, et al. The International Prognostic Scoring System does not accurately discrim- inate different risk categories in patients with post-essential thrombocythemia and post-polycythemia vera myelofibrosis. Haematologica. 2014;99(4):e55-e57.
33. Passamonti F, Giorgino T, Mora B, et al. A clinical-molecular prognostic model to pre- dict survival in patients with post poly- cythemia vera and post essential thrombo-
cythemia myelofibrosis. Leukemia. 2017;31
(12):2726-2731.
34. Brecqueville M, Rey J, Devillier R, et al.
Array comparative genomic hybridization and sequencing of 23 genes in 80 patients with myelofibrosis at chronic or acute phase. Haematologica. 2014;99(1):37-45.
35. Sharifi-Zarchi A, Gerovska D, Adachi K, et al. DNA methylation regulates discrimina- tion of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism. BMC Genomics. 2017;18(1):964.
36. King AD, Huang K, Rubbi L, et al. Reversible regulation of promoter and enhancer his- tone landscape by DNA methylation in mouse embryonic stem cells. Cell Rep. 2016;17(1):289-302.
37. Blattler A, Yao L, Witt H, et al. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 2014;15(9):469.
38. Hon GC, Rajagopal N, Shen Y, et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet. 2013;45(10):1198-1206.
39. Bergmann AK, Castellano G, Alten J, et al. DNA methylation profiling of pediatric B- cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites. Pediatr Blood Cancer. 2017;64(3):e26251.
40. Vignudelli T, Selmi T, Martello A, et al. ZFP36L1 negatively regulates erythroid dif- ferentiation of CD34+ hematopoietic stem cells by interfering with the Stat5b pathway. Mol Biol Cell. 2010;21(19):3340-3351.
41. Galloway A, Saveliev A, Łukasiak S, et al. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science. 2016;352(6284):453-459.
42. Zekavati A, Nasir A, Alcaraz A, et al. Post- transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS ONE. 2014;9(7): e102625.
43. Liu J, Lu W, Liu S, et al. ZFP36L2, a novel AML1 target gene, induces AML cells apop- tosis and inhibits cell proliferation. Leuk Res. 2018;68:15-21.
44. Chen M-T, Dong L, Zhang X-H, et al. ZFP36L1 promotes monocyte/macrophage differentiation by repressing CDK6. Sci Rep. 2015;5(1):16229.
45. Hodson DJ, Janas ML, Galloway A, et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol. 2010;11(8):717-724.
haematologica | 2019; 104(8)
1579


































































































   85   86   87   88   89