Page 119 - 2019_06-Haematologica-web
P. 119

AF4-MLL in human embryonic hematopoietic development
reprogramming into pluripotency. Stem Cell
Reports. 2016;7(4): 602-618.
39. Bueno C, Sardina JL, Di Stefano B, et al.
Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C/EBPalpha. Leukemia. 2016;30(3):674- 682.
40. Giorgetti A, Castano J, Bueno C, et al. Proinflammatory signals are insufficient to drive definitive hematopoietic specification of human HSCs in vitro. Exp Hematol. 2017;45:85-93 e82.
41. Menendez P, Wang L, Chadwick K, Li L, Bhatia M. Retroviral transduction of hematopoietic cells differentiated from human embryonic stem cell-derived CD45(neg)PFV hemogenic precursors. Mol Ther. 2004;10(6):1109-1120.
42. Bueno C, Roldan M, Anguita E, et al. Bone marrow mesenchymal stem cells from patients with aplastic anemia maintain func- tional and immune properties and do not contribute to the pathogenesis of the dis- ease. Haematologica. 2014;99(7):1168-1175.
43. Ramos-Mejia V, Navarro-Montero O, Ayllon V, et al. HOXA9 promotes hematopoietic commitment of human embryonic stem cells. Blood. 2014;124 (20):3065-3075.
44. Toscano MG, Navarro-Montero O, Ayllon V, et al. SCL/TAL1-mediated transcriptional network enhances megakaryocytic specifi- cation of human embryonic stem cells. Mol Ther. 2015;23(1):158-170.
45. Bueno C, Montes R, Menendez P. The ROCK inhibitor Y-27632 negatively affects the expansion/survival of both fresh and cryopreserved cord blood-derived CD34+ hematopoietic progenitor cells: Y-27632 negatively affects the expansion/survival of CD34+HSPCs. Stem Cell Rev. 2010;6(2): 215-223.
46. Rubio R, Garcia-Castro J, Gutierrez-Aranda I, et al. Deficiency in p53 but not retinoblas- toma induces the transformation of mes- enchymal stem cells in vitro and initiates leiomyosarcoma in vivo. Cancer Res. 2010;70(10):4185-4194.
47. Ayllon V, Bueno C, Ramos-Mejia V, et al. The Notch ligand DLL4 specifically marks
human hematoendothelial progenitors and regulates their hematopoietic fate. Leukemia. 2015;29(8):1741-1753.
48. Vodyanik MA, Slukvin, II. Hematoendothelial differentiation of human embryonic stem cells. Curr Protoc Cell Biol. 2007;Chapter 23:Unit 23 26.
49. Bueno C, Montes R, de la Cueva T, Gutierrez-Aranda I, Menendez P. Intra-bone marrow transplantation of human CD34(+) cells into NOD/LtSz-scid IL-2rgamma(null) mice permits multilineage engraftment without previous irradiation. Cytotherapy. 2010;12(1):45-49.
50. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells. 2010;28(9):1568-1570.
Haematologica. 2018 Jun 14. [Epub ahead of
print]
57. Peters DG, Klucher KM, Perlingeiro RC, et
al. Autocrine and paracrine effects of an ES- cell derived, BCR/ABL-transformed hematopoietic cell line that induces leukemia in mice. Oncogene. 2001;20(21): 2636-2646.
58. Ji J, Risueno RM, Hong S, et al. Brief report: ectopic expression of NUP98-HOXA10 aug- ments erythroid differentiation of human embryonic stem cells. Stem Cells. 2011; 29(4):736-741.
59. Tan YT, Ye L, Xie F, et al. Respecifying human iPSC-derived blood cells into highly engraftable hematopoietic stem and progen- itor cells with a single factor. Proc Natl Acad Sci U S A. 2018;115(9):2180-2185.
60. Marschalek R. Mechanisms of leukemogen- esis by MLL fusion proteins. Br J Haematol. 2011;152(2):141-154.
61. Boisset JC, van Cappellen W, Andrieu-Soler C, et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature. 2010;464(7285):116-
51. Vodyanik MA, Bork JA, Thomson JA,
Slukvin, II. Human embryonic stem cell-
derived CD34+ cells: efficient production in
the coculture with OP9 stromal cells and
analysis of lymphohematopoietic potential.
Blood. 2005;105(2):617-626. 120.
52. Prieto C, Stam RW, Agraz-Doblas A, et al. Activated KRAS cooperates with MLL-AF4 to promoteextramedullary engraftment and migration of cord blood CD34+ HSPC but is insufficient to initiate leukemia. Cancer Res. 2016;76(8):2478-2489.
53. Deshpande AJ, Deshpande A, Sinha AU, et al. AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell. 2014;26(6):896-908.
54. Guenther MG, Lawton LN, Rozovskaia T, et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev. 2008;22(24):3403- 3408.
62. Ahmad K, Scholz B, Capelo R, et al. AF4 and AF4-MLL mediate transcriptional elongation of 5-lipoxygenase mRNA by 1, 25-dihydrox- yvitamin D3. Oncotarget. 2015;6(28):25784- 25800.
63. Benedikt A, Baltruschat S, Scholz B, et al. The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia. 2011;25 (1):135-144.
64. Muck F, Bracharz S, Marschalek R. DDX6 transfers P-TEFb kinase to the AF4/AF4N (AFF1) super elongation complex. Am J Blood Res. 2016;6(3):28-45.
65. Driessen EM, van Roon EH, Spijkers- Hagelstein JA, et al. Frequencies and prog- nostic impact of RAS mutations in MLL- rearranged acute lymphoblastic leukemia in infants. Haematologica. 2013;98(6):937-
55. Andersson AK, Ma J, Wang J, et al. The land-
scape of somatic mutations in infant MLL-
rearranged acute lymphoblastic leukemias.
Nat Genet. 2015;47(4):330-337. 944.
56. Malouf C, Ottersbach K. The fetal liver lym- phoid-primed multipotent progenitor pro- vides the prerequisites for the initiation of t(4;11) MLL-AF4 infant leukemia.
66. Kuhn A, Loscher D, Marschalek R. The IRX1/HOXA connection: insights into a novel t(4;11)- specific cancer mechanism. Oncotarget. 2016;7(23):35341-35352.
haematologica | 2019; 104(6)
1201


































































































   117   118   119   120   121