Page 118 - 2019_06-Haematologica-web
P. 118

C. Bueno et al.
proteins resulting from chromosomal translocations, which remains obscure in human leukemia.
Acknowledgments
Financial support for this work was obtained from the European Research Council (CoG-2014-646903 and PoC-2018-811220) and the Generalitat de Catalunya (SGR330 and PERIS 2017- 2019) to PM, the Spanish Ministry of Economy and Competitiveness (SAF2016-80481-R and SAF2016-76758-R) to PM and IV, the Spanish Association against Cancer (AECC- CI-2015) and Fero Foudation to CB, the Health Institute Carlos
III (ISCIII/FEDER, PI17/01028 and PI17/01028) to CB and PJR, the NIHR GOSH BRC and Great Ormond Street Hospital Children's Charity to J.dB, and Bloodwise and Cancer Research UK to BG. RM and PM were also supported by the Deutsche José Carreras Leukämie Stiftung. PM also acknowledges finan- cial support from the Obra Social La Caixa-Fundaciò Josep Carreras. R-T-R is supported by a fellowship from the Spanish Association of Cancer Research (AECC). RV-M is supported by a Torres Quevedo fellowship from the Spanish Ministry of Science and Innovation (PTQ-16-08623). P.M is an investigator of the Spanish Cell Therapy cooperative network (TERCEL).
References
1. Milne TA. Mouse models of MLL leukemia: recapitulating the human disease. Blood. 2017;129(16):2217-2223.
2. Montes R, Ayllon V, Prieto C, et al. Ligand- independent FLT3 activation does not coop- erate with MLL-AF4 to immortalize/trans- form cord blood CD34+ cells. Leukemia. 2014;28(3):666-674.
3. Stam RW, den Boer ML, Schneider P, et al. Targeting FLT3 in primary MLL-gene- rearranged infant acute lymphoblastic leukemia. Blood. 2005;106(7):2484-2490.
4. Sanjuan-Pla A, Bueno C, Prieto C, et al. Revisiting the biology of infant t(4;11)/MLL- AF4+ B-cell acute lymphoblastic leukemia. Blood. 2015;126(25):2676-2685.
5. Ford AM, Ridge SA, Cabrera ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature. 1993;363(6427):358-360.
6. Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006;6(3):193-203.
7. Bueno C, Montes R, Catalina P, Rodriguez R, Menendez P. Insights into the cellular ori- gin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement. Leukemia. 2011;25(3):400- 410.
8. Barrett NA, Malouf C, Kapeni C, et al. Mll- AF4 confers enhanced self-renewal and lym- phoid potential during a restricted window in development. Cell Rep. 2016;16(4):1039- 1054.
9. Bueno C, Ayllon V, Montes R, et al. FLT3 activation cooperates with MLL-AF4 fusion protein to abrogate the hematopoietic spec- ification of human ESCs. Blood. 2013;121(19):3867-3878, S3861-3863.
10. Bueno C, Montes R, Melen GJ, et al. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification. Cell Res. 2012;22(6):986-1002.
11. Bursen A, Schwabe K, Ruster B, et al. The AF4.MLL fusion protein is capable of induc- ing ALL in mice without requirement of MLL.AF4. Blood. 2010;115(17):3570-3579.
12. Chen W, Li Q, Hudson WA, et al. A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood. 2006;108(2):669-677.
13. Krivtsov AV, Feng Z, Lemieux ME, et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell. 2008;14(5):355-368.
14. Lin S, Luo RT, Ptasinska A, et al. Instructive role of MLL-fusion proteins revealed by a model of t(4;11) pro-B acute lymphoblastic
leukemia. Cancer Cell. 2016;30(5):737-749. 15. Metzler M, Forster A, Pannell R, et al. A con- ditional model of MLL-AF4 B-cell tumouri- genesis using invertor technology.
Oncogene. 2006;25(22):3093-3103.
16. Montes R, Ayllon V, Gutierrez-Aranda I, et al. Enforced expression of MLL-AF4 fusion in cord blood CD34+ cells enhances the hematopoietic repopulating cell function and clonogenic potential but is not sufficient to initiate leukemia. Blood. 2011;117(18):
4746-4758.
17. Tamai H, Miyake K, Takatori M, et al.
Activated K-Ras protein accelerates human MLL/AF4-induced leukemo-lympho- mogenicity in a transgenic mouse model. Leukemia. 2011;25(5):888-891.
18. Kowarz E, Burmeister T, Lo Nigro L, et al. Complex MLL rearrangements in t(4;11) leukemia patients with absent AF4.MLL fusion allele. Leukemia. 2007;21(6):1232- 1238.
19. Agraz-Doblas A. Bueno C, Bashford-Rogers R., et al. Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis. Haematologica. 2019;104(6):1176-1188
20. Trentin L, Giordan M, Dingermann T, et al. Two independent gene signatures in pedi- atric t(4;11) acute lymphoblastic leukemia patients. Eur J Haematol. 2009;83(5):406- 419.
21. Kumar AR, Yao Q, Li Q, Sam TA, Kersey JH. t(4;11) leukemias display addiction to MLL- AF4 but not to AF4-MLL. Leuk Res. 2011;35(3):305-309.
22. Sanders DS, Muntean AG, Hess JL. Significance of AF4-MLL reciprocal fusion in t(4;11) leukemias? Leuk Res. 2011;35(3):299- 300.
23. Prieto C, Marschalek R, Kuhn A, et al. The AF4-MLL fusion transiently augments multi- lineage hematopoietic engraftment but is not sufficient to initiate leukemia in cord blood CD34(+) cells. Oncotarget. 2017;8 (47):81936-81941.
24. Rego EM, Pandolfi PP. Reciprocal products of chromosomal translocations in human cancer pathogenesis: key players or innocent bystanders? Trends Mol Med. 2002;8(8):396-405.
25. Wilkinson AC, Ballabio E, Geng H, et al. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep. 2013;3(1):116-127.
26. Menendez P, Bueno C, Wang L. Human embryonic stem cells: a journey beyond cell replacement therapies. Cytotherapy. 2006;8 (6):530-541.
27. Romero-Moya D, Santos-Ocana C, Castano J, et al. Genetic rescue of mitochondrial and skeletal muscle impairment in an induced pluripotent stem cells model of coenzyme Q10 deficiency. Stem Cells. 2017;35(7): 1687-1703.
28. Menendez P, Vargas A, Bueno C, et al. Quantitative analysis of bcl-2 expression in normal and leukemic human B-cell differen- tiation. Leukemia. 2004;18(3):491-498.
29. Ramos-Mejia V, Melen GJ, Sanchez L, et al. Nodal/activin signaling predicts human pluripotent stem cell lines prone to differen- tiate toward the hematopoietic lineage. Mol Ther. 2010;18(12):2173-2181.
30. Wang L, Li L, Shojaei F, et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic proper- ties. Immunity. 2004;21(1):31-41.
31. Diehl F, Rossig L, Zeiher AM, Dimmeler S, Urbich C. The histone methyltransferase MLL is an upstream regulator of endothelial- cell sprout formation. Blood. 2007;109(4): 1472-1478.
32. Hatzipantelis ES, Athanassiou-Metaxa M, Gombakis N, et al. Thrombomodulin and von Willebrand factor: relation to endothe- lial dysfunction and disease outcome in chil- dren with acute lymphoblastic leukemia. Acta Haematol. 2011;125(3):130-135.
33. Menendez P, Catalina P, Rodriguez R, et al. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia har- bor and express the MLL-AF4 fusion gene. J Exp Med. 2009;206(13):3131-3141.
34. Ramos-Mejia V, Fernandez AF, Ayllon V, et al. Maintenance of human embryonic stem cells in mesenchymal stem cell-conditioned media augments hematopoietic specifica- tion. Stem Cells Dev. 2012;21(9):1549-1558.
35. Sanchez L, Gutierrez-Aranda I, Ligero G, et al. Maintenance of human embryonic stem cells in media conditioned by human mes- enchymal stem cells obviates the require- ment of exogenous basic fibroblast growth factor supplementation. Tissue Eng Part C Methods. 2012;18(5):387-396.
36. Bueno C, Montes R, Martin L, et al. NG2 antigen is expressed in CD34+ HPCs and plasmacytoid dendritic cell precursors: is NG2 expression in leukemia dependent on the target cell where leukemogenesis is trig- gered? Leukemia. 2008;22(8):1475-1478.
37. Castano J, Menendez P, Bruzos-Cidon C, et al. Fast and efficient neural conversion of human hematopoietic cells. Stem Cell Reports. 2014;3(6):1118-1131.
38. Munoz-Lopez A, Romero-Moya D, Prieto C, et al. Development refractoriness of MLL- rearranged human B cell acute leukemias to
1200
haematologica | 2019; 104(6)


































































































   116   117   118   119   120