Page 24 - 2019_04-Haematologica-web
P. 24

D. Rossi et al. References
1. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer a survey. Biochim Biophys Acta. 2007;775(1):181-232.
2. Thierry AR, El Messaoudi S, Gahan PB, Anker P, Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35(3):347-376.
3. Thakur BK, Zhang H, Becker A, et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24(6):766-769.
4. Kahlert C, Melo SA, Protopopov A, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869-3875.
5. Jahr S, Hentze H, Englisch S, et al. DNA frag- ments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659-1665.
6. Stroun M, Lyautey J, Lederrey C, Olson- Sand A, Anker P. About the possible origin and mechanism of circulating DNA: apopto- sis and active DNA release. Clin Chim Acta. 2001;313(1-2):139-142.
7. Mouliere F, El Messaoudi S, Pang D, Dritschilo A, Thierry AR. Multi-marker analysis of circulating cell-free DNA toward personalized medicine for colorectal cancer. Mol Oncol. 2014;8(5):927-941.
8. Mouliere F, Robert B, Arnau Peyrotte E, et al. High fragmentation characterizes tumour- derived circulating DNA. PLoS One. 2011;6(9):e23418.
9. Roschewski M, Dunleavy K, Pittaluga S, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: a correlative biomarker study. Lancet Oncol. 2015;16(5): 541-549.
10. Armand P, Oki Y, Neuberg DS, et al. Detection of circulating tumour DNA in patients with aggressive B-cell non-Hodgkin lymphoma. Br J Haematol. 2013;163(1):123- 126.
11. Hohaus S, Giachelia M, Massini G, et al. Cell-free circulating DNA in Hodgkin's and non-Hodgkin's lymphomas. Ann Oncol. 2009;20(8):1408-1413.
12. Kurtz DM, Green MR, Bratman SV, et al. Noninvasive monitoring of diffuse large B- cell lymphoma by immunoglobulin high- throughput sequencing. Blood. 2015;125 (24):3679-3687.
13. Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68.
14. Ladetto M, Brüggemann M, Monitillo L, et al. Next-generation sequencing and real- time quantitative PCR for minimal residual disease detection in B-cell disorders. Leukemia. 2014;28(6):1299-1307.
15. Rossi D, Diop F, Spaccarotella E, et al. Diffuse large B-cell lymphoma genotyping
on the liquid biopsy. Blood. 2017;129(14):
1947-1957.
16. Spina V, Bruscaggin A, Cuccaro A, et al.
Circulating tumor DNA reveals genetics, clonal evolution and residual disease in clas- sical Hodgkin lymphoma. Blood. 2018;131 (22):2413-2425.
17. Hattori K, Sakata-Yanagimoto M, Suehara Y, et al. Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma. Cancer Sci. 2018;109(1):225-230.
18. Kurtz, DM, Scherer, F, Newman, AM, et al. Prediction of therapeutic outcomes in DLBCL from circulating tumor DNA dynamics. J Clin Oncol. 2016;34(15 Suppl): 7511.
19. Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circu- lating tumor DNA with broad patient cover- age. Nat Med. 2014;20(5):548-554.
20. Scherer F, Kurtz DM, Newman AM, et al. Development and validation of biopsy-free genotyping for molecular subtyping of dif- fuse large B-cell lymphoma. Blood. 2016;128(22):1089-1089.
21. Wood B, Wu D, Crossley B, et al. Deep- sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2012;120(26):5173-5180.
22. Martinez-Lopez J, Lahuerta JJ, Pepin, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood. 2014;123(20): 3073-3079.
23. Gonzalez Aguilar A, Idbaih A, Boisselier B, et al. Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res. 2012;18(19): 5203-5211.
24. Bruno A, Boisselier B, Labreche K, et al. Mutational analysis of primary central nerv- ous system lymphoma. Oncotarget. 2014;5(13):5065-5075.
25. Braggio E, Van Wier S, Ojha J, et al. Genome-wide analysis uncovers novel recurrent alterations in primary central nerv- ous system lymphomas. Clin Cancer Res. 2015;21(17):3986-3994.
26. Vater I, Montesinos Rongen M, Schlesner M, et al. The mutational pattern of primary lymphoma of the central nervous system determined by whole exome sequencing. Leukemia. 2015;29(3):677-685.
27. Yamada S, Ishida Y, Matsuno A, Yamazaki K. Primary diffuse large B-cell lymphomas of central nervous system exhibit remarkably high prevalence of oncogenic MYD88 and CD79B mutations. Leuk Lymphoma. 2015;56(7):2141-2145.
28. Fukumura K, Kawazu M, Kojima S, et al. Genomic characterization of primary central nervous system lymphoma. Acta Neuropathol. 2016;131(6):865-875.
29. Hattori K, Sakata Yanagimoto M, Okoshi Y, et al. MYD88 (L265P) mutation is associated with an unfavourable outcome of primary central nervous system lymphoma. Br J Haematol. 2017;177(3):492-494.
30. Nakamura T, Tateishi K, Niwa T, et al.
Recurrent mutations of CD79B and MYD88 are the hallmark of primary central nervous system lymphomas. Neuropathol Appl Neurobiol. 2016;42(3):279-290.
31. Landgren O, Staudt L. MYD88 L265P somatic mutation in IgM MGUS. N Engl J Med. 2012;367(23):2255-2256.
32. Kalpadakis C, Pangalis GA, Vassilakopoulos TP, et al. Detection of L265P MYD-88 muta- tion in a series of clonal B-cell lymphocytosis of marginal zone origin (CBL-MZ). Hematol Oncol. 2017;35(4):542-547.
33. Gerlinger M, Rowan AJ, Horswell S, al. Intratumor heterogeneity and branched evo- lution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883-892.
34. Araf S, Wang J, Korfi K, et al. Genomic pro- filing reveals spatial intra-tumor heterogene- ity in follicular lymphoma. Leukemia. 2018;32(5):1258-1263.
35. Diaz LA Jr, Bardelli A. Liquid biopsies: geno- typing circulating tumor DNA. J Clin Oncol. 2014;32(6):579-586.
36. Scherer F, Kurtz DM, Newman AM, et al. Non invasive genotyping and assessment of treatment response in diffuse large B cell lymphoma. Blood. 2015;126(23):114.
37. Scherer F, Kurtz DM, Newman AM, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8(364):364ra155.
38. Scherer F, Kurtz DM, Newman AM, et al. Noninvasive Detection of Ibrutinib Resistance in Non-Hodgkin Lymphoma Using Cell-Free DNA. Blood. 2016;128(22): 1752.
39. Camus V, Stamatoullas A, Mareschal S, et al. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica. 2016; 101(9):1094-1101.
40. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059-3068.
41. Moghbel MC, Mittra E, Gallamini A, et al. Response Assessment Criteria and Their Applications in Lymphoma: Part 2. J Nucl Med. 2018;58(1):13-22.
42. Johnson, P.W. Response-adapted frontline therapy for Hodgkin lymphoma: are we there yet? Hematology Am Soc Hematol Educ Program. 2016;2016(1):316-322.
43. Mamot C, Klingbiel D, Hitz F, et al. Final Results of a Prospective Evaluation of the Predictive Value of Interim Positron Emission Tomography in Patients With Diffuse Large B-Cell Lymphoma Treated With R-CHOP-14 (SAKK 38/07). J Clin Oncol. 2015;33(23):2523-2529.
44. Kurtz DM, Scherer F, Jin MC, et al. Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J Clin Oncol. 2018;36 (28):2845-2853.
652
haematologica | 2019; 104(4)


































































































   22   23   24   25   26