Page 30 - 2019_02-Haematologica-web
P. 30

L. Prieto-Torres et al.
mens from 47 patients with report of rare
variants. J Cutan Pathol. 2008;35(1):46-53.
39. Kempf W, Kazakov DV, Paredes BE, et al. Primary cutaneous anaplastic large cell lym- phoma with angioinvasive features and cytotoxic phenotype: a rare lymphoma vari- ant within the spectrum of CD30+ lympho- proliferative disorders. Dermatology. 2013;
227(4):346-352.
40. Resnik KS, Kutzner H. Of lymphocytes and
cutaneous epithelium: keratoacanthoma- tous hyperplasia in CD30+ lymphoprolifer- ative disorders and CD30+ cells associated with keratoacanthoma. Am J Dermatopathol. 2010;32(3):314-315.
41. Wang J, Sun NC, Nozawa Y, et al. Histological and immunohistochemical characterization of extranodal diffuse large- cell lymphomas with prominent spindle cell features. Histopathology. 2001;39(5):476- 481.
42. Kinney MC, Collins RD, Greer JP, et al. A small-cell-predominant variant of primary Ki-1 (CD30)+ T-cell lymphoma. Am J Surg Pathol. 1993;17(9):859-868.
43. Wang L, Li C, Gao T. Cutaneous intravascu- lar anaplastic large cell lymphoma. J Cutan Pathol. 2011;38(2):221-226.
44. Ferrara G, Ena L, Cota C, et al. Intralymphatic spread is a common finding in cutaneous CD30+ lymphoproliferative disorders. Am J Surg Pathol. 2015;39(11): 1511-1517.
45. Felgar RE, Macon WR, Kinney MC, et al. TIA-1 expression in lymphoid neoplasms. Identification of subsets with cytotoxic T lymphocyte or natural killer cell differentia- tion. Am J Pathol. 1997;150(6):1893-1900.
46. Savage KJ, Harris NL, Vose JM, et al. ALK- anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lym- phoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. Blood. 2008;111(12): 5496-5504.
47. Battistella M, Janin A, Jean-Louis F, et al. KIR3DL2 (CD158k) is a potential therapeu- tic target in primary cutaneous anaplastic large-cell lymphoma. Br J Dermatol. 2016; 175(2):325-333.
48. Geissinger E, Sadler P, Roth S, et al. Disturbed expression of the T-cell receptor/CD3 com- plex and associated signaling molecules in CD30+ T-cell lymphoproliferations. Haematologica. 2010;95(10):1697-1704.
49. Macgrogan G, Vergier B, Dubus P, et al. CD30-positive cutaneous large cell lym- phomas. A comparative study of clinico- pathologic and molecular features of 16 cases. Am J Clin Pathol. 1996;105(4):440- 450.
50. Feldman AL, Dogan A, Smith DI, et al. Discovery of recurrent t(6;7)(p25.3;q32.3) translocations in ALK-negative anaplastic large cell lymphomas by massively parallel genomic sequencing. Blood. 2011;117(3): 915-919.
51. Parrilla Castellar ER, Jaffe ES, Said JW, et al. ALK-negative anaplastic large cell lym- phoma is a genetically heterogeneous dis- ease with widely disparate clinical out- comes. Blood. 2014;124(9):1473-1480.
52. Feldman AL, Law M, Remstein ED, et al. Recurrent translocations involving the IRF4 oncogene locus in peripheral T-cell lym- phomas. Leukemia. 2009;23(3):574-580.
53. Kiran T, Demirkesen C, Eker C, et al. The significance of MUM1/IRF4 protein expres- sion and IRF4 translocation of CD30(+) cuta- neous T-cell lymphoproliferative disorders:
a study of 53 cases. Leuk Res. 2013;37
(4):396-400.
54. Onaindia A, Montes-Moreno S, Rodriguez-
Pinilla SM, et al. Primary cutaneous anaplas- tic large cell lymphomas with 6p25.3 rearrangement exhibit particular histological features. Histopathology. 2015;66(6):846- 855.
55. Fauconneau A, Pham-Ledard A, Cappellen D, et al. Assessment of diagnostic criteria between primary cutaneous anaplastic large-cell lymphoma and CD30-rich trans- formed mycosis fungoides; a study of 66 cases. Br J Dermatol. 2015;172(6):1547-1554.
lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27(4):516-532.
69. Velusamy T, Kiel MJ, Sahasrabuddhe AA, et al. A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lympho- proliferative disorders. Blood. 2014;124(25): 3768-3771.
70. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144 (5):646-674.
71. Hassler MR, Pulverer W, Lakshminarasimhan R, et al. Insights into the pathogenesis of anaplastic large-cell lym- phoma through genome-wide DNA methy- lation profiling. Cell Rep. 2016;17(2):596-
56. Pham-Ledard A, Prochazkova-Carlotti M,
Laharanne E, et al. IRF4 gene rearrange-
ments define a subgroup of CD30-positive 608.
cutaneous T-cell lymphoma: a study of 54 cases. J Invest Dermatol. 2010;130(3):816- 825.
57. Xing X, Flotte TJ, Law ME, et al. Expression of the chemokine receptor gene, CCR8, is associated With DUSP22 rearrangements in anaplastic large cell lymphoma. Appl Immunohistochem Mol Morphol. 2015;23 (8):580-589.
58. van Kester MS, Tensen CP, Vermeer MH, et al. Cutaneous anaplastic large cell lym- phoma and peripheral T-cell lymphoma NOS show distinct chromosomal alterations and differential expression of chemokine receptors and apoptosis regulators. J Invest Dermatol. 2010;130(2):563-575.
59. Melard P, Idrissi Y, Andrique L, et al. Molecular alterations and tumor suppressive function of the DUSP22 (Dual specificity phosphatase 22) gene in peripheral T-cell lymphoma subtypes. Oncotarget. 2016;7(42):68734-68748.
60. Sekine Y, Tsuji S, Ikeda O, et al. Regulation of STAT3-mediated signaling by LMW- DSP2. Oncogene. 2006;25(42):5801-5806.
61. Li JP, Yang CY, Chuang HC, et al. The phos- phatase JKAP/DUSP22 inhibits T-cell recep- tor signalling and autoimmunity by inacti- vating Lck. Nat Commun. 2014;5:3618.
62. Le Deley MC, Reiter A, Williams D, et al. Prognostic factors in childhood anaplastic large cell lymphoma: results of a large European intergroup study. Blood. 2008;111(3):1560-1566.
63. Oschlies I, Lisfeld J, Lamant L, et al. ALK- positive anaplastic large cell lymphoma lim- ited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study. Haematologica. 2013;98(1):50-56.
64. Kadin ME, Pinkus JL, Pinkus GS, et al. Primary cutaneous ALCL with phosphory- lated/activated cytoplasmic ALK and novel phenotype: EMA/MUC1+, cutaneous lym- phocyte antigen negative. Am J Surg Pathol. 2008;32(9):1421-1426.
65. Lamant L, Pileri S, Sabattini E, et al. Cutaneous presentation of ALK-positive anaplastic large cell lymphoma following insect bites: evidence for an association in five cases. Haematologica. 2010;95(3):449- 455.
66. Chavan RN, Bridges AG, Knudson RA, et al. Somatic rearrangement of the TP63 gene preceding development of mycosis fun- goides with aggressive clinical course. Blood Cancer J. 2014;e253.
67. Ohgami RS, Ma L, Merker JD, et al. STAT3 mutations are frequent in CD30+ T-cell lym- phomas and T-cell large granular lympho- cytic leukemia. Leukemia 2013;27: 2244- 2247.
68. Crescenzo R, Abate F, Lasorsa E, et al. Convergent mutations and kinase fusions
72. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22(2):128-134.
73. YiS,SunJ,QiuL,etal.DualroleofEZH2in cutaneous anaplastic large cell lymphoma: promoting tumor cell survival and regulating tumor microenvironment. J Invest Dermatol. 2018;138(5):1126-1136.
74. Allan RS, Nutt SL. Deciphering the epigenet- ic code of T lymphocytes. Immunol Rev. 2014;261(1):50-61.
75. Persson JL. miRNA in mycosis fungoides and skin inflammation. APMIS. 2013;121 (11):1017-1019.
76. Ralfkiaer U, Hagedorn PH, Bangsgaard N, et al. Diagnostic microRNA profiling in cuta- neous T-cell lymphoma (CTCL). Blood. 2011;118(22):5891-5900.
77. Benner MF, Ballabio E, van Kester MS, et al. Primary cutaneous anaplastic large cell lym- phoma shows a distinct miRNA expression profile and reveals differences from tumor- stage mycosis fungoides. Exp Dermatol. 2012;21(8):632-634.
78. Sandoval J, Diaz-Lagares A, Salgado R, et al. MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. J Invest Dermatol. 2015;135(4):1128-1137.
79. Lawrie CH. MicroRNA expression in lym- phoid malignancies: new hope for diagnosis and therapy? J Cell Mol Med. 2008;12(5a): 1432-1444.
80. Liu C, Iqbal J, Teruya-Feldstein J, et al. MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood. 2013;122(12):2083-2092.
81. Hassler MR, Klisaroska A, Kollmann K, et al. Antineoplastic activity of the DNA methyl- transferase inhibitor 5-aza-2'-deoxycytidine in anaplastic large cell lymphoma. Biochimie. 2012;94(11):2297-2307.
82. Wong HK. Novel biomarkers, dysregulated epigenetics, and therapy in cutaneous T-cell lymphoma. Discov Med. 2013;16(87):71-78.
83. Ellisen LW, Bird J, West DC, et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neo- plasms. Cell. 1991;66(4):649-661.
84. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269-271.
85. Jundt F, Anagnostopoulos I, Forster R, et al. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 2002;99(9):3398-3403.
86. Jundt F, Probsting KS, Anagnostopoulos I, et al. Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood. 2004;103(9):3511-3515.
87. Rosati E, Sabatini R, Rampino G, et al.
234
haematologica | 2019; 104(2)


































































































   28   29   30   31   32