Page 114 - 2019_02-Haematologica-web
P. 114

A.L. Fedullo et al.
11. Foà R, Vitale A, Vignetti M, et al. Dasatinib
as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011;118 (25):6521-6528.
12. Chiaretti S, Vitale A, Elia L, et al. Multicenter Total Therapy GIMEMA LAL 1509 protocol for de novo adult Ph+ acute lymphoblastic leukemia (ALL) patients. Updated results and refined genetic-based prognostic stratifi- cation. Blood. 2015;126 (23):81.
13. Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome- positive acute lymphoblastic leukemia: Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010;28(22):3644-3652.
14. Ribera JM, García O, Montesinos P, et al. Treatment of young patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia using increased dose of imatinib and deintensified chemotherapy before allogeneic stem cell transplantation. Br J Haematol. 2012;159 (1):78-81.
15. Fielding AK, Rowe JM, Buck G, et al. UKALLXII/ECOG2993: addition of imatinib to a standard treatment regimen enhances long-term outcomes in Philadelphia positive acute lymphoblastic leukemia. Blood. 2014;123(6):843-850.
16. Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015;125(24):3711-3719.
17. Litzow MR, Fielding AK, Luger SM, et al. The evolving role of chemotherapy and hematopoietic cell transplants in Ph-positive acute lymphoblastic leukemia in adults. Bone Marrow Transplant. 2017;52(12):1592- 1598.
18. Cimino G, Pane F, Elia L, et al. The role of BCR/ABL isoforms in the presentation and outcome of patients with Philadelphia-posi- tive acute lymphoblastic leukemia: a seven- year update of the GIMEMA 0496 trial. Haematologica. 2006;91(3):377-380.
19. Lee S, Kim DW, Cho BS, et al. Impact of minimal residual disease kinetics during imatinib-based treatment on transplantation outcome in Philadelphia chromosome-posi- tive acute lymphoblastic leukemia. Leukemia. 2012;26(11):2367-2374.
20. Ravandi F, Jorgensen JL, Thomas DA, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome- positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122(7):1214-1221.
21. Martinelli G, Iacobucci I, Storlazzi CT, et al. IKZF1 (Ikaros) deletions in BCR-ABL1-posi- tive acute lymphoblastic leukemia are asso- ciated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol. 2009;27(31):5202-5207.
22. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is char- acterized by the deletion of Ikaros. Nature. 2008;453(7191):110-114.
23. Mullighan CG. Genomic profiling of B-prog- enitor acute lymphoblastic leukemia. Best Pract Res Clin Haematol. 2011;24(4):489- 503.
24. van der Veer A, Zaliova M, Mottadelli F, et al. IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL. Blood. 2014;123(11):1691-1698.
25. DeBoer R, Koval G, Mulkey F, et al. Clinical impact of ABL1 kinase domain mutations
and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665. Leuk Lymphoma. 2016;57(10):2298-2306.
26. Soverini S, Vitale A, Poerio A, et al. Philadelphia-positive acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations at low levels at the time of diagnosis. Haematologica. 2011;96(4):552-557.
27. Soverini S, De Benedittis C, Machova Polakova K, et al. Unraveling the complexity of tyrosine kinase inhibitor-resistant popula- tions by ultra-deep sequencing of the BCR- ABL kinase domain. Blood. 2013;122(9): 1634-1648.
28. Messina M, Chiaretti S, Fedullo AL, et al. Clinical significance of recurrent copy num- ber aberrations in B-lineage acute lym- phoblastic leukaemia without recurrent fusion genes across age cohorts. Br J Haematol. 2017;178(4):583-587.
29. Moorman AV, Enshaei A, Schwab C, et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood. 2014;124(9):1434-1444.
30. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758-764.
31. Kuiper RP, Schoenmakers EF, van Reijmersdal SV, et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differen- tiation and cell cycle progression. Leukemia. 2007;21(6):1258-1266.
32. Safavi S, Hansson M, Karlsson K, et al. Novel gene targets detected by genomic pro- filing in a consecutive series of 126 adults with acute lymphoblastic leukemia. Haematologica. 2015;100(1):55-61.
33. Iacobucci I, Storlazzi CT, Cilloni D, et al. Identification and molecular characteriza- tion of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR- ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie EMatologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood. 2009;114(10):2159-2167.
34. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lym- phoblastic leukemia. N Engl J Med. 2009; 360(5):470-480.
35. Stanulla M, Dagdan E, Zaliova M, et al. IKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J Clin Oncol. 2018; 36(12):1240-1249.
36. Boer JM, van der Veer A, Rizopoulos D, et al. Prognostic value of rare IKZF1 deletion in childhood B-cell precursor acute lym- phoblastic leukemia: an international collab- orative study. Leukemia. 2016;30(1):32-38.
37. Jabbour E, Kantarjian H, Ravandi F, et al. Combination of hyper-CVAD with pona- tinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia: a single-centre, phase 2 study. Lancet Oncol. 2015;16(15):1547-1555.
38. Messina M, Chiaretti S, Wang J, et al. Prognostic and therapeutic role of targetable lesions in B-lineage acute lymphoblastic leukemia without recurrent fusion genes. Oncotarget. 2016;7(12):13886-13901.
39. Ribera J, Morgades M, Zamora L, et al.
Prognostic significance of copy number alterations in adolescent and adult patients with precursor B acute lymphoblastic leukemia enrolled in PETHEMA protocols. Cancer. 2015;121(21):3809-3817.
40. Martinelli G, Iacobucci I, Papayannidis C, et al. New targets for Ph+ leukaemia therapy. Best Pract Res Clin Haematol. 2009;22(3): 445-454.
41. Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lym- phoblastic leukemia: recent insights and future directions. Leukemia. 2009;23(7): 1209-1218.
42. Xu N, Li YL, Li X, et al. Correlation between deletion of the CDKN2 gene and tyrosine kinase inhibitor resistance in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. J Hematol Oncol. 2016;9:40.
43. Pfeifer H, Raum K, Markovic S, et al. Genomic CDKN2A/2B deletions in adult Ph+ ALL are adverse despite allogeneic stem cell transplantation. Blood. 2018;131(13): 1464-1475.
44. Heerema NA, Harbott J, Galimberti S, et al. Secondary cytogenetic aberrations in child- hood Philadelphia chromosome positive acute lymphoblastic leukemia are nonran- dom and may be associated with outcome. Leukemia. 2004;18(4):693-702.
45. Li Y, Qiu L, Zou D, et al. Additional chromo- somal abnormalities and their prognostic significance in adult Philadelphia-positive acute lymphoblastic leukemia: with or with- out imatinib in chemotherapy. Ann Hematol. 2009;88(11):1069-1077.
46. Short NJ, Kantarjian HM, Sasaki K,et al. Poor outcomes associated with +der(22)t(9;22) and -9/9p in patients with Philadelphia chro- mosome-positive acute lymphoblastic leukemia receiving chemotherapy plus a tyrosine kinase inhibitor. Am J Hematol. 2017;92(3):238-243.
47. Seol CA, Cho YU, Jang S, et al. Prognostic significance of recurrent additional chromo- somal abnormalities in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer Genet. 2017;216-217:29-36.
48. Motlló C, Ribera JM, Morgades M, et al. Frequency and prognostic significance of additional cytogenetic abnormalities to the Philadelphia chromosome in young and older adults with acute lymphoblastic leukemia. Leuk Lymphoma. 2018;59(1):146- 154.
49. Homminga I, Pieters R, Langerak AW, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19(4):484-497.
50. Zuurbier L, Gutierrez A, Mullighan CG, et al. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell pre- cursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors. Haematologica. 2014;99(1): 94-102.
51. Laszlo GS, Alonzo TA, Gudgeon CJ, et al. High expression of myocyte enhancer factor 2C (MEF2C) is associated with adverse-risk features and poor outcome in pediatric acute myeloid leukemia: a report from the Children's Oncology Group. J Hematol Oncol. 2015;8:115.
52. Colomer-Lahiguera S, Pisecker M, König M, et al. MEF2C-dysregulated pediatric T-cell acute lymphoblastic leukemia is associated with CDKN1B deletions and a poor response to glucocorticoid therapy. Leuk Lymphoma. 2017;58(12):2895-2904.
318
haematologica | 2019; 104(2)


































































































   112   113   114   115   116