Page 79 - 2019_01-Haematologica-web
P. 79

HbF induction in AML/MDS and outcome prediction
References
1. Daskalakis M, Nguyen TT, Nguyen C, et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodys- plastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment. Blood. 2002;100(8): 2957-2964.
2. Tsai HC, Li H, Van Neste L, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hemato- logical and epithelial tumor cells. Cancer Cell. 2012;21(3):430-446.
3. Klco JM, Spencer DH, Lamprecht TL, et al. Genomic impact of transient low-dose decitabine treatment on primary AML cells. Blood. 2013;121(9):1633-1643.
4. Claus R, Pfeifer D, Almstedt M, et al. Decitabine induces very early in vivo DNA methylation changes in blasts from patients with acute myeloid leukemia. Leuk Res. 2013;37(2):190-196.
5. Chiappinelli KB, Strissel PL, Desrichard A, et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell. 2015;162(5):974-986.
6. Roulois D, Loo Yau H, Singhania R, et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 2015;162(5): 961-973.
7. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G. Gene body methylation can alter gene expression and is a therapeu- tic target in cancer. Cancer Cell. 2014;26(4):577-590.
8. Lübbert M, Daskalakis M, Kunzmann R, Engelhardt M, Guo Y, Wijermans P. Nonclonal neutrophil responses after suc- cessful treatment of myelodysplasia with low-dose 5-aza-2'-deoxycytidine (decitabine). Leuk Res. 2004;28(12):1267- 1271.
9. Ley TJ, DeSimone J, Anagnou NP, et al. 5- azacytidine selectively increases gamma- globin synthesis in a patient with beta+ tha- lassemia. N Engl J Med. 1982;307(24):1469- 1475.
10. Chu BF, Karpenko MJ, Liu Z, et al. Phase I study of 5-aza-2'-deoxycytidine in combina- tion with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol. 2013;71(1):115-121.
11. Gollob JA, Sciambi CJ, Peterson BL, et al. Phase I trial of sequential low-dose 5-aza-2'- deoxycytidine plus high-dose intravenous bolus interleukin-2 in patients with melanoma or renal cell carcinoma. Clin Cancer Res. 2006;12(15):4619-4627.
12. Koshy M, Dorn L, Bressler L, et al. 2-deoxy 5-azacytidine and fetal hemoglobin induc- tion in sickle cell anemia. Blood. 2000;96 (7):2379-2384.
13. Olivieri NF, Saunthararajah Y, Thayalasuthan V, et al. A pilot study of sub- cutaneous decitabine in beta-thalassemia intermedia. Blood. 2011;118(10):2708-2711.
14. Tan P, Wei A, Mithraprabhu S, et al. Dual epigenetic targeting with panobinostat and azacitidine in acute myeloid leukemia and
high-risk myelodysplastic syndrome. Blood
Cancer J. 2014;4:e170.
15. Gore SD, Baylin S, Sugar E, et al. Combined
DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res. 2006;66(12):6361-6369.
16. Lübbert M, Ihorst G, Sander PN, et al. Elevated fetal haemoglobin is a predictor of better outcome in MDS/AML patients receiving 5-aza-2'-deoxycytidine (decitabine). Br J Haematol. 2017;176(4): 609-617.
17. Bissé E, Wieland H. High-performance liq- uid chromatographic separation of human haemoglobins. Simultaneous quantitation of foetal and glycated haemoglobins. J Chromatogr. 1988;434(1):95-110.
18. Belsley DA KE, Welsh RE. Regression Diagnostics. New York: John Wiley & Sons, 1980.
19. Anderson JR, Cain KC, Gelber RD. Analysis of survival by tumor response and other comparisons of time-to-event by outcome variables. J Clin Oncol. 2008;26(24):3913- 3915.
20. Claus R, Fliegauf M, Stock M, Duque JA, Kolanczyk M, Lübbert M. Inhibitors of DNA methylation and histone deacetylation independently relieve AML1/ETO-mediated lysozyme repression. J Leukoc Biol. 2006;80 (6):1462-1472.
21. Miller CW, Young K, Dumenil D, Alter BP, Schofield JM, Bank A. Specific globin mRNAs in human erythroleukemia (K562) cells. Blood. 1984;63(1):195-200.
22. Rutherford T, Clegg JB, Higgs DR, Jones RW, Thompson J, Weatherall DJ. Embryonic ery- throid differentiation in the human leukemic cell line K562. Proc Natl Acad Sci USA. 1981;78(1):348-352.
23. Guilbert LJ, Nelson DJ, Hamilton JA, Williams N. The nature of 12-O-tetrade- canoylphorbol-13-acetate (TPA)-stimulated hemopoiesis, colony stimulating factor (CSF) requirement for colony formation, and the effect of TPA on [125I]CSF-1 binding to macrophages. J Cell Physiol. 1983;115(3): 276-282.
24. Baer C, Claus R, Frenzel LP, et al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aber- rant microRNA expression in chronic lym- phocytic leukemia. Cancer Res. 2012;72(15):3775-3785.
25. Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321 (6067):209-213.
26. van der Ploeg LH, Flavell RA. DNA methyla- tion in the human gamma delta beta-globin locus in erythroid and nonerythroid tissues. Cell. 1980;19(4):947-958.
27. An integrated encyclopedia of DNA ele- ments in the human genome. Nature. 2012;489(7414):57-74.
28. Saunthararajah Y. LD, DeSimone J. Epigenetic regulation of globin genes and disturbances in hemoglobinopathies. In: Lübbert M., Jones PA, ed. Epigenetic Therapy of Cancer. Berlin, Heidelberg: Springer, 2014.
29. Press KR, Uy N, Keefer J, et al. Clinical eval-
uation of combined azacitidine and entinos- tat on the induction of fetal hemoglobin in patients with acute myeloid leukemias and myelodysplastic syndromes. Leuk Lymphoma. 2017:2018;59(3):755-757.
30. van den Bosch J, Lübbert M, Verhoef G, Wijermans PW. The effects of 5-aza-2'- deoxycytidine (decitabine) on the platelet count in patients with intermediate and high-risk myelodysplastic syndromes. Leuk Res. 2004;28(8):785-790.
31. van der Helm LH, Alhan C, Wijermans PW, et al. Platelet doubling after the first azaciti- dine cycle is a promising predictor for response in myelodysplastic syndromes (MDS), chronic myelomonocytic leukaemia (CMML) and acute myeloid leukaemia (AML) patients in the Dutch azacitidine compassionate named patient programme. Br J Haematol. 2011;155(5):599-606.
32. Cross M, Bach E, Tran T, et al. Pretreatment long interspersed element (LINE)-1 methyla- tion levels, not early hypomethylation under treatment, predict hematological response to azacitidine in elderly patients with acute myeloid leukemia. Onco Targets Ther. 2013;6:741-748.
33. Choi JW, Kim Y, Fujino M, Ito M. Significance of fetal hemoglobin-containing erythroblasts (F blasts) and the F blast/F cell ratio in myelodysplastic syndromes. Leukemia. 2002;16(8):1478-1483.
34. Rautonen J, Siimes MA. Initial blood fetal hemoglobin concentration is elevated and is associated with prognosis in children with acute lymphoid or myeloid leukemia. Blut. 1990;61(1):17-20.
35. Fluhr S, Krombholz CF, Meier A, et al. Epigenetic dysregulation of the erythropoi- etic transcription factor KLF1 and the beta- like globin locus in juvenile myelomonocytic leukemia. Epigenetics. 2017;12(8):715-723.
36. Takai J, Moriguchi T, Suzuki M, Yu L, Ohneda K, Yamamoto M. The Gata1 5' region harbors distinct cis-regulatory mod- ules that direct gene activation in erythroid cells and gene inactivation in HSCs. Blood. 2013;122(20):3450-3460.
37. Moriguchi T, Suzuki M, Yu L, Takai J, Ohneda K, Yamamoto M. Progenitor stage- specific activity of a cis-acting double GATA motif for Gata1 gene expression. Mol Cell Biol. 2015;35(5):805-815.
38. Shearstone JR, Golonzhka O, Chonkar A, et al. Chemical inhibition of histone deacety- lases 1 and 2 induces fetal hemoglobin through activation of GATA2. PLoS One. 2016;11(4):e0153767.
39. Rivers A, Vaitkus K, Ibanez V, et al. The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis). Haematologica. 2016;101(6):688- 697.
40. Renneville A, Van Galen P, Canver MC, et al. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood. 2015;126(16):1930-1939.
41. Dulmovits BM, Appiah-Kubi AO, Papoin J, et al. Pomalidomide reverses gamma-globin silencing through the transcriptional repro- gramming of adult hematopoietic progeni- tors. Blood. 2016;127(11):1481-1492.
haematologica | 2019; 104(1)
69


































































































   77   78   79   80   81