Page 34 - 2019_01-Haematologica-web
P. 34

U. Oyarbide et al.
Hematopoietic Stem Cell Biology:
Underlying Mechanisms and Potential Therapeutic Strategies. Anemia. 2012; 2012:1-18.
62. Dong H, Nebert DW, Bruford EA, Thompson DC, Joenje H, Vasiliou V. Update of the human and mouse Fanconi anemia genes. Hum Genomics. 2015;9:32.
63. Titus TA, Selvig DR, Qin B, et al. The Fanconi anemia gene network is conserved from zebrafish to human. Gene. 2006;371 (2):211-223.
64. Liu TX, Howlett NG, Deng M, et al. Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53- dependent apoptosis. Dev Cell. 2003;5(6):903-914.
65. Rodríguez-Marí A, Cañestro C, BreMiller RA, et al. Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis. PLoS Genet. 2010;6(7): e1001034.
66. Botthof JG, Bielczyk-Maczynska E, Ferreira L, Cvejic A. Loss of the homologous recom- bination gene rad51 leads to Fanconi ane- mia-like symptoms in zebrafish. Proc Natl Acad Sci USA. 2017;114(22):E4452-e4461.
67. Boocock GR, Morrison JA, Popovic M, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33(1):97-101.
68. Menne TF, Goyenechea B, Sánchez-Puig N, et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nature Genet. 2007;39(4):486-495.
69. Dhanraj S, Matveev A, Li H, et al. Biallelic mutations in DNAJC21 cause Shwachman- Diamond syndrome. Blood. 2017;129(11): 1557-1562.
70. Tummala H, Walne AJ, Williams M, et al. DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation. Am J Hum Genet. 2016;99 (1):115-124.
71. Stepensky P, Chacon-Flores M, Kim KH, et al. Mutations in EFL1, an SBDS partner, are associated with infantile pancytopenia, exocrine pancreatic insufficiency and skele- tal anomalies in aShwachman-Diamond like syndrome. J Med Genet. 2017;54(8):558- 566.
72. Erdos M, Alapi K, Balogh I, et al. Severe Shwachman-Diamond syndrome pheno- type caused by compound heterozygous missense mutations in the SBDS gene. Exp Hematol. 2006;34(11):1517-1521.
73. Kuijpers TW, Alders M, Tool AT, Mellink C, Roos D, Hennekam RC. Hematologic abnormalities in Shwachman Diamond syn- drome: lack of genotype-phenotype rela- tionship. Blood. 2005;106(1):356-361.
74. Makitie O, Ellis L, Durie PR, et al. Skeletal phenotype in patients with Shwachman- Diamond syndrome and mutations in SBDS. Clin Genet. 2004;65(2):101-112.
75. Dror Y, Donadieu J, Koglmeier J, et al. Draft consensus guidelines for diagnosis and treat-
ment of Shwachman-Diamond syndrome.
Ann N Y Acad Sci. 2011;1242:40-55.
76. Venkatasubramani N, Mayer AN. A Zebrafish Model for the Shwachman- Diamond Syndrome (SDS). Pediatr Res.
2008;63(4):348-352.
77. Provost E, Wehner KA, Zhong X, et al.
Ribosomal biogenesis genes play an essen- tial and p53-independent role in zebrafish pancreas development. Development. 2012;139(17):3232-3241.
78. Oyarbide U, Kell MJ, Farinas J, Topczewski J, Corey S. Gene disruption of zebrafish Sbds phenocopies human Shwachman- Diamond Syndrome but suggests more global and lineage defects. Blood. 2016;128(22):336.
79. Ballmaier M. c-mpl mutations are the cause of congenital amegakaryocytic thrombocy- topenia. Blood. 2001;97(1):139-146.
80. Rose MJ, Nicol KK, Skeens MA, Gross TG, Kerlin BA. Congenital amegakaryocytic thrombocytopenia: the diagnostic impor- tance of combining pathology with molecu- lar genetics. Pediatr Blood Cancer. 2008;50(6):1263-1265.
81. Ihara K, Ishii E, Eguchi M, et al. Identification of mutations in the c-mpl gene in congenital amegakaryocytic thrombocy- topenia. Proc Natl Acad Sci USA. 1999;96(6):3132-3136.
82. Alexander WS, Roberts AW, Nicola NA, Li R, Metcalf D. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood. 1996;87(6):2162-2170.
83. Lin Q, Zhang Y, Zhou R, et al. Establishment of a congenital amegakaryocytic thrombo- cytopenia model and a thrombocyte-specif- ic reporter line in zebrafish. Leukemia. 2017;31(5):1206-1216.
84. Skokowa J, Germeshausen M, Zeidler C, Welte K. Severe congenital neutropenia: inheritance and pathophysiology. Curr Opin Hematol. 2007;14(1):22-28.
85. Vilboux T, Lev A, Malicdan MCV, et al. A Congenital Neutrophil Defect Syndrome Associated with Mutations in VPS45. N Engl J Med. 2013;369(1):54-65.
86. Ward AC, van Aesch YM, Gits J, et al. Novel point mutation in the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor in a case of severe congen- ital neutropenia hyporesponsive to G-CSF treatment. J Exp Med. 1999;190(4):497-507.
87. Pazhakh V, Clark S, Keightley MC, Lieschke GJ. A GCSFR/CSF3R zebrafish mutant mod- els the persistent basal neutrophil deficiency of severe congenital neutropenia. Sci Rep. 2017;7:44455.
88. Carapito R, Konantz M, Paillard C, et al. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J Clin Invest. 2017;127(11):4090-4103.
89. Bellanné-Chantelot C, Schmaltz-Panneau B, Marty C, et al. Mutations in SRP54 gene cause severe congenital neutropenia as well
as Shwachman-Diamond-like syndrome.
Blood. 201;132(12):1318-1331.
90. Rowell J, Pietka G, Virgilio M, Pena O,
Hockings C, Payne E. A Zebrafish Model of Diamond-Blackfan Anemia Results in Bone Marrow Failure and Demonstrates Defective Translation in Erythroid Cells By Ribosome Footprinting. Blood. 2017;130 (Suppl 1):871.
91. McGowan KA, Mason PJ. Animal models of Diamond Blackfan Anemia. Semin Hematol. 2011;48(2):106-116.
92. Morgado-Palacin L, Varetti G, Llanos S, Gomez-Lopez G, Martinez D, Serrano M. Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis. Cell Rep. 2015;13(4):712-722.
93. Taylor AM, Humphries JM, White RM, Murphey RD, Burns CE, Zon LI. Hematopoietic defects in rps29 mutant zebrafish depend upon p53 activation. Exp Hematol. 2012;40(3):228-237.e5.
94. Watkins-Chow DE, Cooke J, Pidsley R, et al. Mutation of the diamond-blackfan anemia gene Rps7 in mouse results in morphological and neuroanatomical phenotypes. PLoS Genet. 2013;9(1):e1003094.
95. Uechi T, Nakajima Y, Nakao A, et al. Ribosomal protein gene knockdown causes developmental defects in zebrafish. PLoS One. 2006;1:e37.
96. Ruggero D, Grisendi S, Piazza F, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science. 2003;299(5604):259-262.
97. Gu BW, Bessler M, Mason PJ. A pathogenic dyskerin mutation impairs proliferation and activates a DNA damage response independ- ent of telomere length in mice. Proc Natl Acad Sci USA. 2008;105(29):10173-10178.
98. Jaskelioff M, Muller FL, Paik J-H, et al. Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice. Nature. 2011;469(7328):102-106.
99. Parmar K, D'Andrea A, Niedernhofer LJ. Mouse models of Fanconi anemia. Mutat Res. 2009;668(1-2):133-140.
100. Rodriguez-Mari A, Postlethwait JH. The role of Fanconi anemia/BRCA genes in zebrafish sex determination. Methods Cell Biol. 2011;105:461-490.
101. Lim DS, Hasty P. A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol. 1996;16(12):7133-7143.
102. Zhang S, Shi M, Hui CC, Rommens JM. Loss of the mouse ortholog of the Shwachman-Diamond syndrome gene (Sbds) results in early embryonic lethality. Mol Cell Biol. 2006;26(17):6656-6663.
103.Lim KH, Chang YC, Chiang YH, et al. Expression of CALR mutants causes mpl- dependent thrombocytosis in zebrafish. Blood Cancer J. 2016;6(10):e481.
104.Liu F, Kunter G, Krem MM, et al. Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest. 2008;118(3):946-955.
24
haematologica | 2019; 104(1)


































































































   32   33   34   35   36